msofl?

GraFORTH

Graphics Language Reference Manual

GraFOl!?T H

GraFORTH
LANGUAGE MANUAL

Personal Use Notice

GraFORTH Is licensed for personal use only. If you wish to market software
written In GraFORTH that contains all or any part of the GraFORTH language,

refer to Chapter 10 in this manual or contact Insoft, Inc. for a program license
agreement.

Notice

Insoft Inc. and Paul Lutus reserve the right to make Improvements in the
product described In this manual at any time and without notice.

Disclaimer of all Warranties And Liabilities

Insoft Inc. and Paul Lutus make no warranties, either expressed or Implied, with
respect to the software described In this manual, Its quality, performance,
merchantability or fitness for any particular purpose. This software Is licensed
“as is”. The entire risk as to the quality and performance of the software Is with
the buyer. Should the software prove defective following its purchase, the buyer
(and not INSOFT INC., or Paul Lutus, their retailers or distributors) assumes the
entire cost of all necessary servicing, repair or correction and any incidental or
consequential damages. In no event will INSOFT INC. or Paul Lutus be liable
for direct, Indirect, incidental or consequential damages resulting from any
defect In the software even if they have been advised of the possibility of such
damages. Some states do not allow the exclusion or limitation of Implied
warranties or liabilities for incidental or consequential damages, so the above
limitation or exclusion may not apply to you.

The word Apple and the Apple logo are registered trademarks of Apple
Computer Inc.

Apple Computer Inc. makes no warranties, either expressed or implied,
regarding the enclosed computer software package, its merchantability or Its
fitness for any particular purpose.

DOS 3.3 Copyright 1979-1981 Apple Computer, Inc.

This manual is copyrighted. All rights are reserved. This document may not, in
whole or part, be copied, photocopied, reproduced, translated or reduced to any
electronic medium or machine readable form without prior consent, In writing,
from Insoft Inc.

©1982 by Insoft Inc.
10175 Barbur Blvd., Suite 202B
Portland, OR 97219
(503) 244-4181

TABLE OF CONTENTS

Disclaimer and Warranty

Table of Contents

PART I: Setting the CONTEXT for GraFORTH. . .

CHAPTER ONE: PREVIEW

Introduction to GraFORTH
Manual Overview

How to Use This Manual
Start-up Procedures

A PLAYful Preview

CHAPTER TWO: BACKGROUND

What You'll Need to Have
What You'll Need to Know
What You'll Need to Do
What You'll Need to Be

PART lI: The CONTENT of GraFORTH. . .
CHAPTER THREE: STARTING GraFORTH

Purpose and Overview

First Things First

More Words

Defining New Words

Looping Structure

The Return Stack

Comparing Numbers

Decision and Branching Structures
Program Structure and Other Miscellany
Conclusion

CHAPTER FOUR: TEXT MAGIC

Purpose and Overview

Strange and Wonderful Characters
The Text Editor

Program Compilation

Comments

Using the Editor with GraFORTH

- b b b b
1 [} L]
OOOHN

IR
OCOWN

PRPPPOPPWE
HBNNNN=22NNN
QUUIW=ON

phpbss
- b= NN
P YA

CHAPTER FIVE: DELVING DEEPER. . .

Purpose and Overview 5-2

Text Formatting 5-2

Data Storage and Retrieval 5-4

Strings 5-9

Words Manipulating Individual Characters 5-19
Using Numbers in Other Bases 5-22
Using DOS from GraFORTH 5-23
Peripheral Card /O 5-25
Program Control Words 5-26
Saving the GraFORTH System 5-27
Overlays 5-29
Moving Memory and Retrieving Word Addresses 5-30
Calling Machine Language Routines 5-31
Compiling Number Tables 5-32
Leaving GraFORTH (gently) 5-32
Conclusion 5-32

CHAPTER SIX: TWO-DIMENSIONAL GRAPHICS

Purpose and Overview 6-2
Apple Graphics 6-3
GraFORTH Graphics 6-4
Two-Dimensional Graphics Words 6-4
Turtlegraphics 6-12

CHAPTER SEVEN: CHARACTER GRAPHICS

Purpose and Overview
Special Output Characters
Changing Character Size and Color

Ny
WNN

Font Selection 7-5
The CHAREDITOR 7-7
Block Printing from GraFORTH 7-12
Setting the Block Size 7-12
Chapter Summary 7-15
Conclusion 7-18

CHAPTER EIGHT: THREE-DIMENSIONAL
GRAPHICS

Purpose and Overview

3-D Graphics at a Glance

Image Parameters

The IMAGEDITOR
Three-Dimensional Display Methods
Profile

Playing Around

Conclusion

CHAPTER NINE: MUSIC

Introduction

VOICE

NOTE

Determining Durations and Pitch
Useful Music Words

Postscripts

CHAPTER TEN: FINAL WRAP

PART IV: APPENDICES. . .
A: GraFORTH J[DICTIONARY Definitions

Alphabetical Listing
Listing by Functional Groupings

B: DATA: GraFORTH TECHNICAL DATA

Three-Dimensional Mathematical Method
Image Table Internal Format

Dictionary Structure

System Memory Map

Page Zero Memory Map

C: FILES: A LISTING OF DISKETTE FILES
D: ASCIHl CODES
E: INDEX: GraFORTH System Manual

PPPPPPE®
NN===OINN
HANOOONO

PPPOPD
Y SATAINTY

CHAPTER ONE: PREVIEW
CHAPTER TABLE OF CONTENTS:

Introduction to GraFORTH

A Family of Languages

Features

Comparison with Standard FORTH
Comparison with TransFORTH
Program Editing and Storage

Manual Overview

Structure
Review of Content

How to Use This Manual

Differences of Style

Tutorial Learning

Reference Aids
Muitiple Tables of Contents
The Word Library Definitions
Index

Conventions Used

Request for Feedback

Start-up Procedures

Product Information Card and Replacement Policy
Making and Using Backup Copies

A PLAYful Preview

An Introductory Tutorial
Running the PLAY Program

PREVIEW

Page

N
N

-— d b b —h
[] 1]
AhONN

Iy
-)

-—eed b d e) b b

ONNNNNOO

I
-

-—

(Ve Qo]

1-9

1-9
1-10

11

Introduction to GraFORTH

The Apple computer has some potentially powerful graphics
capabilities. One of the most impressive of these is the
presence of high-resolution color graphics. While there has been
a large number of programs written which use this capability,
sometimes in a most dramatic way, and there have been several
outstanding graphics utilities written to ease the task of adding
Apple Graphics to programs, until now, no computer languages have
been specifically created for the purpose of fully exploiting
these features. GraFORTH is just such a language.

A Family of Languages

GraFORTH is the latest member of a powerful new "family of
languages" developed for Insoft by Paul Lutus. The first of
these related lanquages to be released was TransFORTH. While
TransFORTH and GraFORTH are related, each of these lanquages has
different functions and capabilities, and is designed to meet
different needs. They are related in the ways members of a
family are related - they have the same parentage, that of the
FORTH language. In a moment, we'll take a look at that heritage,
and discuss the differences between GraFORTH and other FORTH
implementations. But first, let's look at the capabilities of
GraFORTH you'11 very soon be learning!

Features

GraFORTH provides many features not seen before on small
computers. The system can draw three-dimensional images, in
color, at rates that make animation possible. A sophisticated
music synthesizer, a part of the language, allows the addition of
music as well as sound to GraFORTH programs. Text display may be
in any size, color, or typeface, and mixed with graphics images
on any part of the screen. Personalized character fonts may be
created, and fonts full of different two-dimensional images may
be block printed to any screen location under full program
control. Clearly, this is a programming language designed for
applications where fast, sophisticated graphics capability is
important, such as the development of games and entertainment
software.

PREVIEW 1 -2

Comparison with Standard FORTH

The above features are embodied 1n a very fast, fully compiled
version of FORTH. Nearly all other Apple lanquages (both BASICs,
UCSD Apple Pascal, Apple FORTRAN, and most other FORTHs) are
interpreted while they are running. This is often done to
provide what is called 'code transportability', the ability to
take programs from one computer and run them on another with
either no or few modifications. Unfortunately, this drastically
reduces the speed of your programs. GraFORTH (and TransFORTH)
have been designed for the computer you own, the Apple. They
have been specifically written to make maximum use of the
features built into your machine, and therefore no attempt has
been made to create transportable code. By compiling directly to
6502 machine language, speed was greatly increased over nearly
every other language - a must for smooth, fast, animation quality
graphics. Even though GraFORTH is fully compiled for the purpose
of increased speed, commands may still be typed directly at the
keyboard, rather 1ike an interpreted lanquage. As implemented,
then, GraFORTH has both the speed of a compiled language and the
immediate feedback of an interpreted language, the best of both
worlds. Finally, GraFORTH, unlike standard implementations of
FORTH, uses standard Apple DOS commands and file structures, to
retain compatibility with the work you have already done with
your computer, and to reduce the time it will take to learn
GraFORTH.

If you are already familiar with another version of FORTH, you
will find many similarities and many differences between GraFORTH
and other FORTH versions, as GraFORTH 1s only loosely related to
these other languages. The general structure of the language has
been retained (at least outwardly), but the implementation of
that structure is vastly different. These changes have been made
for very specific reasons. In short, the intended usage of
GraFORTH 1s very different from that for which FORTH was
originally designed. GraFORTH is a computer graphics language,
and this in and of itself brought about many changes. Further,
it was our intention to make GraFORTH as easy to learn and as
similar to existing Apple environments as possible. Therefore,
if you already know FORTH, we hope you will bear in mind that
this language has been designed for those who do not share your
knowledge of FORTH-1ike environments and who want a fast, easy to
learn graphics language. For those of you who do not know FORTH,
dive in! You will find GraFORTH to be a powerful, _yetintuitive
language. Very soon you will be using your Apple to do things
you never thought were possible before!

PREVIEW 1 -3

Comparison with TransFORTH

By way of contrast, while GraFORTH is a powerful graphics
programming language, restricted to whole number (integer)
calculations for the purpose of graphics speed, TransFORTH is a
scientific and business oriented language with floating-point
arithmetic and a much more extensive operating system.
TransFORTH also has two-dimensional line-drawing and
TURTLEGRAPHICS capabilities, but no three-dimensional graphics,
and character graphics are limited to selection of pre-defined
character sets. Thus, TransFORTH has much more calculating
ahility, but less graphics, while just the opposite is true of
GraFORTH.

Program Editing and Storage

Programs, subroutines, or 'words', as they are known in FORTH,
can be written in the lanquage editor and stored in text files
for later modification or use. Because these files are standard
DOS text files, any editor of the user's choosing which creates
such files may be used. Because program segments may be saved in
this way, the accumulation of proven program modules is
encouraged; which in turn encourages the practice of good
programming techniques.

Manual Overview

Structure

The text portion of this manual is divided into three'parts - an
introductory or context-setting section (Chapters 1 and 2), a
tutorial-based content section of seven chapters to help you
understand and put to use the GraFORTH language system (3 through
9), and a section of appended reference material, including the
GraFORTH Word Library Listings, Technical Data, and Index.
Throughout these chapters, diagrams are used to support the text.
These illustrations and the abundant use of headings should make
it possible for you to skim the text, get a sense of the subject
matter, find general topic areas in the body of text, and never
lose your sense of where you are. The Index should help you find
specific topics quickly.

PREVIEW 1 -4

Review of Content

Part II, the content of the manual (that {is, that material which
is about the Tanguage itself) is presented in seven major chapter
divisions. Chapter 3 is primarily an introduction to the FORTH
language aspects of GraFORTH, including an explanation of the
definition of words, stack operation, and control structures.

(In addition to being a good introduction to GraFORTH, much of
the material covered in this chapter pertains to other FORTHs as
well, making 1t an excellent- FORTH overview.) Chapter 4 covers
text entry, special characters, and the supplied text editor. It
shows how to write and modify GraFORTH programs or "words" and
how to compile them into memory from the editor buffer or from
disk. Chapter 5 presents extended GraFORTH capabilities and
describes how it operates, how it relates to and uses the DOS 3.3
disk operating system, and how its data structures - variables
and strings - are created and used. Chapter 6 introduces
GraFORTH's two-dimensional graphics capabilities including
plotting and line drawing, color selection/filling, and the
TURTLEGRAPHICS commands. Chapter 7 describes character graphics,
particularly a program called CHAREDITOR, which allows the design
of new character fonts and images that can be block printed to
the screen. Chapter 8 reveals the GraFORTH 3-D graphics system,
including moving and manipulating objects in 3-D space. The
program IMAGEDITOR, which allows the creation and modification of
3-D objects, and another, called PROFILE, which speeds up the
process for the particular class of objects which rotate or
revolve around a central axis, are introduced. Another program,
named PLAY, winds up the discussion of 3-D graphics by allowing
you to “play" with an object in space, as you will discover in a
short exercise at the end of this chapter. Chapter 9 describes
how to add music (as opposed to sounds) to your programs, and
Chapter 10 concludes Part II with a discussion of marketing
software developed using GraFORTH. That's a lot of content,
which you surely must be eager to get to, but first perhaps we
should talk about the manual for a bit.

PREVIEW 1-5

How to Use This Manual

Differences of Style

It is important to realize that everyone uses manuals according
to his or her own individual learning styles and skill levels.
There are those of us who start from the beginning and carefully
read every word, and there are others who bound ahead looking for
just enough information to "get on with it". Still others like
to live on the edge, boot the disk first, and only use the manual
if they have to look something up later. Furthermore, even the
same reader will have differing moods and levels of interest, and
will use a technical manual in different ways at different times
according to his or her current understanding of the product.

Tutorial Learning

This manual is set up to be, first of all, a tutorial to guide
you gradually through the steps you need to take to learn the
GraFORTH language and begin to put it to use. 'Tutorial
learning' has become the primary method of microcomputer
instruction. Actually, it's a bit of a misnomer. There is
really no tutor, unless a technical manual can be considered
such. For the most part, it will be just you and the manual and
whatever other resources you can pull together. Be advised,
however, that there are many differences between GraFORTH and
other FORTH implementations. Because of these differences (we
think of them as improvements), we advise you, even if you know
FORTH already, to read the manual carefully at the beginning.

Later, of course, you will be using the manual more as a
reference guide than as a tutorial, and will need to be able to
find specific items of information quickly. There is nothing
more frustrating than knowing that you saw something someplace,
but can't quite remember where. We'll help you find it, after
all, you may be living with this manual for a few weeks. In
either case, tutorial or reference, we have tried to accommodate
all styles of learning.

PREVIEW 1-6

Reference Aids:

Muiltiple Tables of Contents

As mentioned above, there are various reference aids which should
allow you to find what you want quickly when using the manual as
a reference guide. At the beginning of the manual, there is a
comprehensive table of contents which presents the major topics
of the manual, with page numbers, in the order in which they
appear. Each chapter has a similar, but more complete table of
contents for that chapter.

The Word Library Definitions List

Appendix A, in the back of the manual, contains an
alphabetically arranged 1ist of annotated definitions of all the
GraFORTH words which come with the system. Because this is an
important source of information about the language to which you
will be referring frequently, we placed it first, and have also
included an additional cross 1isting of the words by subject
groupings.

Index

In Appendix E, at the end of the manual, there is a comprehensive
index which 1ists the major topics and terms of the manual once
again, but this time alphabetically.

Conventions Used

Several standard conventions are used to simplify the
descriptions. A1l commands which you are to type in are printed
in upper-case type. All 'system' responses are shown as they
appear on the screen. ‘'Control character' entries are denoted by
ConTRoL-X, where X would be replaced with the actual character
entered. Control character entries are made by holding down the
ConTRoL key while depressing the indicated key.

PREVIEW 1-7

Request for Feedback

Let us know what you liked and didn't 1ike about this manual. We
have tried to make it as complete and friendly as possible, but
we know that something, somewhere may he confusing. Let us know
if we omitted a useful tip, or explained something poorly. Also,
let us know what worked for you so we can continue to produce
high quality manuals for future products.

Start-up Procedures

Product Information Card and Replacement Policy

The warranty of this diskette is covered in general by the
statement at the bottom of the warranty and disclaimer page in
the front of the manual. Since its message is hidden in
legalese, let's just say that roughly what is meant is that we
did our best to ship the diskette in perfect condition, but we
have no control over what happens to it enroute to your disk
drive. If, for some reason, it will not 'boot' (come up on the
screen when the machine is turned on), then you should take or
send it back to the place where you purchased it. If they cannot
get it to boot, then we will replace it at no additional cost to
you, for a period of 30 days after you purchased it.

(Thereafter, a nominal replacement fee may be charged.) Once you
have a disk that boots and runs, then it is your responsibility
to protect it by using it only for the purpose of making
duplicate work disks and backups (see next section).

In the meantime, we would appreciate it if you would fill out the.
Product Information Card. This card gives us valuable
information about our customers and helps us design our products
and product line to better serve you. If everyone who buys
GraFORTH turns out to be retired and living in Florida, then this
manual will have to he rewritten with a different set of jokes.
The card also allows us to keep you up to date. If we decide to
send out an updated GraFORTH diskette, then you would probably
want to know about that.

PREVIEW 1-38

Making and Using Backup Copies

If you have not yet made a backup copy of the GraFORTH diskette,
then now is a good time to do so. Never use the original as a
work disk, not even for a few minutes. Particularly, never use
an original disk to try to solve a problem which blew up your
work disk. Make a new backup if you can, and use that to
experiment. Because GraFORTH is compatible with DOS 3.3, any
copy program you normally use to copy your 16-sector Apple DOS
disks will work to copy this diskette. The COPYA program which
came with your DOS 3.3 System Master diskette is a particularly
reliable one, and we recommend using it. In fact, it is
recommended that you have two backup copies so that if one goes
down, you won't have to open your lead-1ined vault to get at the
original.

A PLAYful Preview

An Introductory Tutorial

We suggest that you study the Table of Contents and the Manual
Diagram for a few minutes to get an idea of where we are and
where we have to go, and then, because we know you are itching to
get your hands back onto that machine and create a few
three-dimensional forms to rotate in free-floating and
free-wheeling space, we'll give you a preview of what's to come
in future chapters...

If you catalog your disk, you'll find the text file PLAY on it.
PLAY is a set of routines (or "words"), which when compiled and
run, allows you to pull up a three-dimensional form off the disk
(several are provided), and play with it in 3-D space. Later on,
.we'll tell you how to use PLAY to understand better the 3-D
images you are creating. But for now, we are just going to have
some fun using PLAY. If you have not yet made a backup copy of
your disk, we'll just have to insist that you do so now. From
now on, when we speak of your GraFORTH diskette, we will actually
be referring to the copy you use as a work diskette.

PREVIEW 1-9

Running the PLAY Program

To run PLAY, boot your disk and respond with an 'N' or 'NO' to
the demonstration question. When the "Ready" prompt comes on,
type

READ " PLAY " <return)

Be sure to type it exactly as you see it, including the spaces
between PLAY and the quotation marks. The word READ is a command
that tells the GraFORTH system to read a file on the disk and
compile it into the word l1ibrary, that is, turn it into machine
language for the machine to use. When the "Ready" prompt
reappears, type 'RUN' and a set of instructions will be displayed
on the screen, as illustrated in diagram below:

//[AY - A 3-D Image Manipulator \\
ROTATION SCALE TRANSLATION POSITION
mll @ll %Y! 9@

Press top row keys to select parameter,

then press X
to set in motion

to freeze motion
to reset defoult

Or presss
to reset all Torunw'ers
U to puuse disp
to see hese ins'ructxons
Q to quit

Imoge in CMJemory or on CDlisk? (]

. P

The words, ROT, SCALE, TRANS, and P0OS refer to the four
parameters you may use to manipulate the image in space. ROT
stands for the ability to rotate the object around any of three
axes, SCALE stands for the ability to change the scale or size of
the object, TRANS stands for the ability to translate or move the
image in its 'space envelope', and POS stands for the ability to
move the position of the image on the screen.

PREVIEW 1-10

The characters, 123 456 789 :-, are pressed to activate any of
the above parameters along any of the axes, X, Y, and Z,
indicated below them. The commands in the middle of the screen
start and stop the selected action, or reset the parameters to
their starting positions (called 'defaults'). You are to press
just those keys which are high-1ighted in inverse. If the action
ever gets too fast for you or you see something you'd 1ike to
study, pressing ConTRoL-S will stop the action until you press
another key. Similarly, 'D' will reset the currently active
parameter to its default position, <ESC> will put you bhack at the
beginning, and 'Q' will put you out in the cold at the "Ready"
prompt.

At the bottom of the screen, you are being asked to answer a
question as to where the image is which you would like
w2nipulated. The quickest way to understand the program is to
dive in and try it, pressing the various keys along the way to
see their effects. But first, we need an image to play with.

Unless you're way ahead of us, you do not have a 3-D image in
memory yet, so select 'D' to answer the question at the bottom of
the screen and to begin the image loading process. Next, hit
<return)> to default the address to 2816 (more on that later), and
enter 'XYZ' as the image filename. Again, hit <return>. Your
screen should now show a picture of a vertical line crossed by a
horizontal arrow. In a moment you'll see that these are really
three intersecting arrows. On the right side of the screen are
the movement commands, ROT, SCALE, TRANS, and POS. Ignore the
tatter—two—for the purposes of this short trial run. Now the fun
begins. Press '2', and then the right arrow key. Next press
'1', then the right arrow key. Observe the numbers changing over
on the right. See if you can figure out what they do as you
select keys to press from the previous diagram. Try the left
arrow keys, and watch the action and the numbers change. You may
freeze the selection last changed with 'F', and also by using the
arrow keys to get the parameters bhack to zero.

At this point, you should have a screen which looks something
1ike the one on the next page.

PREVIEW 1-11

N
\

\C1IXROT Value: 16 Inc: 1/

Now press 'D' to reset your current parameter to its default; get
the idea? The more you press the arrow keys, the faster the
image will turn. If you are working on a color screen, you will
see that each axis is a different color, which may help to keep
them straight. Remember, pressing <esc> will set all parameters
to their starting (default) positions, which may be needed if
they start getting out of hand. In particular, if SCALE, TRANS,
and POS get beyond a certain size, they will no longer fit on the
screen, and they will begin to "wrap around", appearing quite
unexpectedly on the opposite side of the screen. It will look

as if you have lines bouncing off the walls, but it is really
only wraparound. If you like that effect, then fine; but if not,
just keep the numbers smaller.

That's enough fun. We have to get back to work and learn the
rest of what GraFORTH has to offer. We'll come back to PLAY in
Chapter 8, and learn what TRANS and POS actually do. But if you
just can't quite quit yet, we'll mention (while the boss is out
of the room) that the way to bring up another 3-D image to PLAY
with is to type 'Q' and then RUN again, repeating all steps
except the one where you enter the filename (try HOUSE).

PREVIEW 1-12

CHAPTER TWO: BACKGROUND
CHAPTER TABLE OF CONTENTS:

What Youll Need to Have

Hardware Requirements
Recommended Peripheral Options
Software Requirements

What You ll Need to Know

About Your Machine

About The DOS
Minor Modifications in DOS 3.3
Making Space on the Disk
Deleting Files
Entering Other DOS Commands
Disk Care

About Programming

About Graphics

About Music

What Youll Need to Do

Get an Overview
Run the Demos
Plunge In

What You'll Need to Be

BACKGROUND

NNRNNRNNNN
NNOOOOOP~PWWW

N
Y

NN
00 0 ™

N
©

2-1

What You'll Need to Have

Hardware Requirements

GraFORTH requires that you have the following minimum hardware
components:

An Apple or Apple + computer with 48K RAM

One DOS 3.3 Apple disk drive with controller

A black and white (or green) video monitor, and/or
A color monitor or color TV with an RF modulator

Recommended Peripheral Options

In addition to the above (including the color display), it is
highly recommended that you have a 16K RAM or lanquage card, to
provide more available memory, and a second disk drive.

Software Requirements

GraFORTH is written in 6502 machine language using the ALD SYSTEM
Assembler which was written by Paul Lutus and is also available
from Insoft. All graphics are internal and are therefore
completely independent of either Apple BASIC (INTEGER or
APPLESOFT). GraFORTH boots from the 'monitor', without a BASIC
"HELLO' program, as you will notice by the presence of the
asterisk prompt (rather than the BASIC prompt), during bootup.
This makes the boot program independent of any resident language
in ROM, avoiding the differences between Apple II and Apple II+
machines which are sometimes troublesome to software. It also
means, however, that it is not possible to add your own special
HELLO program to the disk to have it do your favorite tricks on
bootup. But don't despair; we will show you later how to have
GraFORTH automatically run any program you wish on bootup.
Further, that proaram can be written directly in GraFORTH.

BACKGROUND 2 -2

What You'll Need to Know

What You'll Need to Know about Your Machine

While it is intended that this manual serve as a tutorial in the
use of the GraFORTH language, it is not intended to cover
material already covered quite thoroughly and thoughtfully in the
set of manuals distributed by the Apple Computer Company. If you
are a new user, unfamiliar with how to use your Apple computer,
we suggest that you take the time to go through the Apple
Reference Manual, which came with your machine. You will not
need to know everything in it to use your Apple successfully, but
the more you know, the easier it will be to understand operations
which might otherwise seem puzzling.

What You'll Need to Know about the DOS

With the exception of certain small changes (see below), GraFORTH
uses the standard Apple Disk Operating System, Version 3.3, known
affectionately as DOS 3.3. If you are at all unfamiliar with how
to use your disk operating system, we suggest you take the:time
now to study the NOS Manual which came with your disk drive(s).
It will be time well spent.

Minor Modifications In DOS 3.3

Minor modifications have been made in the disk operating system
to make it run smoothly with GraFORTH. Most of these changes
will be 'user-transparent', or not noticeable, and using DOS from
GraFORTH is the same as using DOS from either of Apple's BASICs.
Both create TEXT type data files, and GraFORTH even uses TEXT
files for savina program 'source code'. The DOS on the supplied
diskette has been modified, however, to take advantage of an °
existing language card or RAM card. If you have such a card, DOS
will be loaded automatically into the language card, leaving much
more room (almost 10K) in main memory for program development.

To take advantage of this additional memory, two editors have
been provided on the disk; OBJ.EDITOR1 for systems without
language cards and OBJ.EDITOR2 for systems with language cards.
Note that GraFORTH requires the DOS it is supplied with. You can
not transfer GraFORTH to a disk with a differént DOS!

BACKGROUND 2 -3

Making Space on the Disk

The GraFORTH diskette, as delivered, is nearly full. Not only
does the disk contain all the system files needed to use
GraFORTH, it also contains many demonstration files as well as
some specialty files. After you have copied the diskette and
exhausted your interest in the demos, you may want to trim your
work disk down a bit to make room for your own files. The
demonstration programs will probably be the first to go.
Appendix C lists the files on the disk, indicating those which
may be deleted without danger to the GraFORTH system by a ">".
See the sections which follow for help on how to delete files
from your work disk.

Alternatively, you might want to leave your work disk intact and
set up another disk for program development. The GraFORTH system
would not need to be on such a disk; you could use, instead, a
standard DOS diskette. If so, you will need to copy the editor
file or files onto that disk as the GraFORTH word, EDIT, looks
for the editor program on the 'current drive'. If you are using
a langquage card, copy OBJ.EDITOR2 onto your program development
disk, otherwise copy OBJ.EDITOR1 onto that disk.

Deleting Files

There are three simple ways to delete files from the disk. One
way is to boot an Applesoft disk, then catalog the GraFORTH
diskette and delete the files you want to remove as you would on
a standard DOS disk. Alternatively, you could use your favorite
file utility, such as FID on your DOS 3.3 System Master Disk, or
else boot GraFORTH and enter your DOS commands from the program
itself. If you are already in GraFORTH, the latter method is the
method of choice. To delete files directly from the program, you
will need to take the following steps:

BACKGROUND 2 -4

1. Boot GraFORTH and you will see the prompt
Demonstration (Y/N)?
2. Answer 'N' and the “Ready" prompt will appear.
3. Respond with:
EDIT <return>

The drive will whirl a bit, loading the editor, and then the
editing title will appear along with a flashing cursor.

4. To enter a DOS command, type:

ConTRoL-D <return>
and the following prompt will appear:

Enter DOS Command :
5. Respond with:

CATALOG <return>

(or CATALOG,D1 <return> for two drive systems)
and the catalog will be listed.
6. Select the files to be deleted and type:

DELETE filename <return>
The drive will run briefly, make its usual scratching sounds and
the file's name will be deleted from the disk directory. You may
confirm that fact with another CATALOG command. Then repeat the
procedure to delete the other files you wish to remove from the
disk. To return to the editor, press the <return> key twice
without entering any DOS commands, and you will see the blinking
cursor of the editor once again. To return back to GraFORTH,

type 'BYE', then press <return>. The GraFORTH header and the
"Ready" prompt should reappear.

BACKGROUND 2-5

Entering Other DOS Commands

The above steps represent the procedure to be followed to enter
any standard DOS 3.3 command from GraFORTH itself. Later on,
we'll describe another method which enables you to use DOS
commands from the "Ready" prompt directly without entering the
editor.

What You'll Need to Know about Disk Care

We assume that by now you have made a copy of the original
diskette, have stored it in some safe place, have had some fun
with PLAY and are anxious to get down to "work". Bear with us
for one more cautionary remark (admittedly unnecessary for almost
all of you). In case you are not familiar with the care and
feeding of floppy diskettes, what we mean by "safe place" is that
the disk is stored vertically, is not bent or folded or exposed
to magnetic fields or to temperatures outside of the range 50 to
125 degrees F., and that the "naked" portion of the disk (as seen
through the small oval opening in the plastic covering) is not
exposed to dust, fingerprints, or cigarette ashes. We recommend
that you always keep your disk in its protective sleeve and box
whenever it is not actually in a disk drive. Never attempt to
write on it with a pencil or ball-point pen. If treated in this
way, your diskettes should give you years of devoted service, and
perhaps even become collector's items of considerable value to
your grandchildren (well, at least curiosities).

What You'll Need to Know about Programming

It is not necessary to know how to program to learn programming
in GraFORTH. It is our position that both TransFORTH and
GraFORTH are simple enough to learn that novices can take them on
as beginning languages. We also believe that they are so
powerful that advanced programmers can use them in a full range
of commercial applications. While it is not necessary to learn
programming prior to starting in on GraFORTH, if you are already
familiar with BASIC or another high-level language, you will, of
course, learn GraFORTH much faster. In particular, a familiarity
with Applesoft and/or Apple Pascal will speed the learning of the
control structures, data structures, and the file handling
portions of the lanquage. Familiarity with FORTH will give you a
head start on the operation of the stacks, postfix notation, and
the word library.

BACKGROUND 2 -6

What You’ll Need to Know about Graphics

Here again, prior experience in graphics programming is helpful
to learn programming in GraFORTH, but it is not required.
Graphics is the heart of GraFORTH - all kinds of graphics -
standard two-dimensional graphics, TURTLEGRAPHICS, color
graphics, block printing of image fonts, three-dimensional
graphics, all at speeds which will support animation, and set to
music if you like. If you do not intend to do a lot of graphics
programming with GraFORTH, then you may have the wrong language.
(Perhaps you really need TransFORTH...)

With GraFORTH, powerful graphics editors allow your images to be
created with considerable ease. A powerful command set allows
them to be put in motion. Routines can be set up as independent
words, then tested out and stored, to be used again and again.
But you do not need to know it all before you start. We'll take
you through it a step at a time.

However, 1f you are a beginner at graphics, you will learn faster
if you draw upon several sources at once and approach the subject
from all sides. The Applesoft Tutorial has a good introduction to
Apple graphics, as does the Apple User's Guide by Lon Poole, et
al. The Apple Pascal Language Reference Manual has a good
chapter on TURTLEGRAPHICS, and if you really want to get into the
whole subject, try Graphic Software for Microcomputers by B. J.
Korites (Kern Publications, 1981).

What You'll Need to Know about Music

As mentioned above, one of the features of GraFORTH is a music
synthesizer which enables you to add music to the programs you
write in the language. Operation is straightforward, and a note
table is provided to make use of the music synthesizer as simple
as possible. We think you will be amazed at the added dimension
it will give to your programs.

BACKGROUND 2 -1

What You'll Need to Do

Get an Overview

One of the most time-saving things you can do right now is to get
an overview of the manual and the structure of GraFORTH. Time
spent on the demos, and studying the table of contents and
diagrams will give you a general framework which then just needs
to be filled in with detail.

In between this chapter and Chapter 9 are the chapters which
explain in detail how to use GraFORTH. Chapter 3 gives an
introduction to the use of GraFORTH. It is something of a
mini-manual in itself, and even those of you who know FORTH may
find it a useful review of how GraFORTH differs from other FORTH
languages. The next six chapters build somewhat on one another
and should be taken in order, with the possible exception of
Chapter 9 on music, which could be read and used anytime after
Chapter 5. .

Run the Demos

The set of demo programs on the diskette will give you a good
sense of what GraFORTH can do. To run a demo, just answer 'Y' to
the demo question which appears after bootup, and then simply
select from the menus which follow. Later we shall tell you how
to remove the demo question.

Plunge In

At this point, there is very little left to do but to load your
work copy of GraFORTH in the drive, boot it up, and plunge in.
Start at a place in the manual appropriate for your skills and
knowledge, read that section, tum to the program, work the
examples, and then see if you can amaze yourself with a few
examples of your own. That's all there is to it. Remember, the
chapters, like the language, tend to build sequentially, so it
may not be wise to skip around too much.

BACKGROUND 2 -8

What You'll Need to Be

Confident, fearless, and fun-loving. Willing to take risks, make
mistakes, and Tearn from those mistakes. Willing to ask stupid
questions and make a fool of yourself to find out what you need
to know. Willing to let yourself enjoy life and turn work into
play. In short, just your average, run-of-the-mill, Apple owner.

BACKGROUND 2-9

CHAPTER THREE: STARTING GraFORTH

Chapter Table of Contents:

Purpose and Overview
First Things First

The System

Words

The Data Stack
Numbers

Hands-On Experience

More Words

Stack Words
Arithmetic Words
Using Words
Printing Text

Defining New Words

Forgetting Words

Looping Structures

The Return Stack

Comparing Numbers

Decision and Branching Word's

IF-THEN

IF-THEN-ELSE
BEGIN-UNTIL
BEGIN-WHILE-REPEAT
CASE:-THEN

Program Structure and Other Miscellany

Word References

Speed and Flexibility vs. Error Checking
Words Which Look Forward

Text vs. Graphics

Memory Considerations

STARTING GraFORTH

Page

W
Y

[} |w
AhPOL &

1 1 lu Iw(ncom
ON N

W W WWwLw
DS O IS TR
N N W=

@
-3
©

3-21
3-23
3-25

3-25
3-27
3-29
3-31
3-32

3-35

3-35
3-36
3-37
3-38
3-38

3-1

Purpose and Overview

As you'll soon see, GraFORTH is a complete, structured language,
with all of the interesting nuances of such a language. In this
chapter, we'll introduce GraFORTH as a lanquage. We'll discuss
the GraFORTH system, the word 1ibrary (sometimes called the
dictionary), and the concept of 'words'. We'll show you how to
use the stack to do arithmetic using Reverse Polish Notation, and
then define your own words in terms of existing ones. We'll
discuss the looping and control features of GraFORTH, then tie up
the chapter with some rules of thumb for writing programs in
GraFORTH.

This chapter (as well as the others) contains numerous examples
to help you understand the GraFORTH system. We strongly
encourage you to try these examples on your computer. And as you
gain experience with the concepts, we encourage you to experiment
further, so that you become truly comfortable working with
GraFORTH.

First Things First

Insert your GraFORTH disk in the drive and boot it. After a few
seconds you'll see:

GraFORTH JL (C) P. Lutus 1981
Demonstration (Y/N) ?

If you haven't yet seen the GraFORTH system demonstration, you
might want to do that now. The demonstration includes
explanations of what GraFORTH is and what it does. As we go on,
however, we'll ignore this question, assuming that you've either
already seen the demo or are no longer interested. Later, we'll
show you how to remove the demo question entirely... Now let's
get into the language. Type an 'N' to the demonstration prompt,
and you will see:

GraFORTH JC (C) P. Lutus 1981

Ready

STARTING GraFORTH 3 -2

The word "Ready" appears whenever the system is ready for your
input. (Makes sense...) If at any time you do not see the word
“Ready" when you think you're supposed to, then it may be time to
start wondering... With the word "Ready" beckoning you on, let's
back up for a few moments to discuss GraFORTH.

The System

The language can be divided into two main parts. The first part
contains the compiler and low-level system routines. For most
applications, the internal workings of these routines can be
ignored. They usually do the things which need to be done
without a lot of fanfare. The second part of the system is the
'word library'. The word library is the "visible" part of the
GraFORTH system, and is the basis for writing programs.

Words

The word 1ibrary is made up of a large number of GraFORTH
'words'. You can see this 1ist of words at any time by typing
the word "LIST". LIST is a GraFORTH word that 1ists all of the
GraFORTH words. (LIST will display 20 words at a time. To see
the entire list, press <return> at each pause. Press ConTRoL-C
if you want to stop the listing.) '

Each GraFORTH word accomplishes a particular task. For example,
the word "BELL" beeps the Apple speaker, the word "+" adds two
numbers together, and the word "DRAW" draws a three-dimensional
image on the screen. Nearly everything in GraFORTH is either a
word or a number. Words can be programs, subroutines, variables,
or strings. Programs are written, not by entering "program
1ines", but by stringing words together.

The name of a word can be any string of ASCII characters that
does not include a space or carriage return. The space acts as a
divider between words, and a carriage return tells the system to
compile the entered 1ine into machine language and, in most
cases, execute it. Since GraFORTH uses spaces to determine when
one word ends and another begins, putting spaces between GraFORTH
words is very important.

STARTING GraFORTH 3-3

The Daté Stack

Words are executed in the order they are entered. When the word
"+" is executed, it wants to add two numbers together, right then
and there. This means that hoth of the numbers to be added must
already be available for "+" when it is executed. Where do the
numbers wait before they are added? They are on the 'data
stack', placed there by you before entering "+".

A1l numbers in GraFORTH are routed through the data stack, which
we'll usually just call the 'stack'. The stack is simply a stack
of numbers, one on top of another, much 1ike a deck of cards, or
a stack of dinner plates. When you enter a number, it is put on
the top of the stack, above any numbers which might already be
there. Some words place numbers on the stack. Some words remove
numbers from the stack. Some words do both. The word "+" is an
example of this; it removes two numbers from the stack, adds
them, and places the sum back on the stack. If the stack is
empty, and a word tries to remove a number from the stack, a
phenomenon called 'stack underflow' occurs. Stack underflow will
be discussed in greater detail at the end of this chapter.

Numbers

GraFORTH is an. integer language. It uses numbers in the range
-32768 to +32767. $ou can enter numbers outside of this range,
but they will be "folded" back into the range (e.g. the number
32769 will be stored as -32767). Certain operations, such as
division, will truncate decimal numbers back into integers. For
example, 7/3=2.333333, but GraFORTH will evaluate 7/3 as 2.

Hands-On Experience

Nearly every entry in GraFORTH is ended by pressing the <return)
key. For the examples below, and throughout the rest of the
manual, press the <return> key after every entry unless we tell
you otherwise.

STARTING GraFORTH 3-14

As you step through these examples, you may mistype something,
and find yourself in a situation you don't quite yet know how to
get out of. If you can't recover things properly, don't worry:
The power switch was put on the Apple for a good reason! Just
turn the power off and reboot again, then try to figure out

what went wrong. We'll help you along the way.

Enough theory. Let's try some examples. Type:
Ready 3 4 5

The numbers 3, 4, and 5 have been put onto the stack. If you
have any doubts, just type the word STACK.

Ready STACK

[3]
4]
[s]
Ready

Typing STACK turns on the stack display, so you can see what
numbers are on the stack. The stack display stays on until you
type STACK again. This display is toggled on or off whenever you
type STACK. You may want to try this a bit, but as we go on,
have the stack display on. Now type: .

Ready 6 7

]
The numbers 6 and 7 have been added to the top of the stack.
Notice that the stack display is "upside-down": What we've been
calling 'top of stack' is shown as being below the other numbers.
Here's why: stacks and 'top of stack' are both standard
computerese conventions, and we didn't want to break tradition by
calling it the "bottom of stack". But the GraFORTH stack can
hold up to 128 numbers while the Apple screen can only display 24
lines. With the stack display turned upside-down, then the 'top
of stack' (the most accessible number) will always be the number
closest to the "Ready" prompt, instead of being scrolled off the
screen.

STARTING GraFORTH 3-5

Now that we have some numbers on the stack, what can we do with
them? One thing we can do is print them. The word "." (period)
removes a number from the stack and prints it. Type a period:

The 7 was removed from the stack and printed. Now type "+":

Ready +

[3]
[4]
[11]
Ready

The numbers 5 and 6 were removed from the stack by the word "+",
added together, and the sum placed back on the stack. Now type
three periods, separated by spaces:

Ready . . .
1143

Ready

The 11, 4, and 3 were all printed, without any spaces between
them. We'll show you how to position the printing of both
numbers and text in a bit.

You now know how to put numbers on the stack, add them together,
and remove them by printing them. Since most words in GraFORTH
use the stack, it's important to know exactly what's happening on
the stack when a word is executed. Let's introduce a notation
for the effect of a word on the stack. We'll list the word,
followed by a "before and after" representation of the stack,
then a brief description of what the word does. The stack
numbers are shown as letters, with a dash to the right indicating
top of stack. Remember, the top of stack is the dash on the
right. An empty stack is indicated by three dashes. Using this
notation, here are the four GraFORTH words we've shown so far:

STARTING GraFORTH 3-6

Word Before After Description

LIST - - - --- Lists the words in the GraFORTH
word library.

STACK - - - - - = Toggles the stack display on and
off.

. n - - - - Prints n.

+ mn = p - Takes m and n off the stack, adds

them and places their sum, p, back
on the stack (p=m+n).

Note that there may be other numbers on the stack below those
shown in the before and after diagrams, but these are not
affected by the word.

More Words

Stack Words

Here are some GraFORTH words which manipulate the numbers on the
stack:

DUP duplicates (makes a copy of) the top number on the stack.
SWAP swaps the position of the top two stack entries.
DROP removes the top number from the stack. The number is lost.

OVER makes a copy of the number immediately beneath top of
stack, placing the copy on the top of the stack.

PICK uses the top number on the stack to select a number from
within the stack, then the number is copied to top of stack.
For example, 1 PICK is equivalent to DUP, and 2 PICK is
equivalent to OVER.

STARTING GraFORTH 3 -7

Here are the same words defined using the stack diagram:

Word Before After Description

pup n - nn - Duplicates n.

SWAP mn - nm- Swaps m and n.

DROP n - - - Drops (forgets) n.

OVER mn - mnm- Copies m to top of stack.

PICK ...mn- ...mq - Copies nth item to top of stack.

Keeping an eye on these definitions, some more examples may be
helpful here:

Ready 1 2 3

[1]

[2]

[3]

Ready SWAP (Exchange positions of the 2 and 3.)

Ready DUP (Make a copy of the 2.)

(1]

(3]

[2]

[2]

Ready DROP (Remove the copy just made.)

[1]

[3]

[2]

Ready OVER (Copy the second from top of stack.)

STARTING GraFORTH 3 -

Ready 4 PICK (Copy the fourth position down stack.)
1]
[3]
[2]
[3]
1]

Ready DROP DROP . (Remove 3 and 1, then print the 2.)

2

(3]

[1]

Ready DROP DROP (Remove the remaining 3 and 1.)

Ready (The stack is now empty.)

You will probably want to experiment further with each of these
words with the stack display on. While their functions may not

be terribly exciting, you'll find they will be very useful later
on for placing numbers where they need to be at the right time.

Arithmetic Word's

You've seen how "+" works; on the next page is a listing of the
GraFORTH arithmetic words.

STARTING GraFORTH 3-9

(addition)

(subtraction)

(multiplication)

(division)

(modulo)

(change sign)

(absolute value)

(sign)

(sine)

(minimum)

(maximum)

-32768¢<n<32767 (random number)

Word Before After Description

+ mn - p - p=m+n

- mn - p - p=m-n

b mn - p - p=m*n

/ mn - p - p=m/n

MOD mn - r- remainder

CHS n - m - m=-n

ABS n - m - m=ABS(n)

SGN n- m - m=1 if n>0,
0 if n=0,
-1 if n<0

SIN n - m - -128<m<127

MIN mn - P - p=m if m¢n,
n if nd<m

MAX mn - p - p=m if mdn,
n if nd>m

RND p— n -

RNDB - - - n - 0<n<255

STARTING GraFORTH

(random byte)

3-10

Here are some examples of the GraFORTH arithmetic words in
action:

Ready 23 5 / .
4

Ready 23 5 MOD .
3

(23 divided by 5 leaves 4, and a remainder of 3.)

Ready 6 CHS
[-6]

Ready ABS .
6

Ready 18 19 MIN
(18]

Ready SGN .

1

Ready -7 SGN .
-1

Ready RND .
-22317

RND leaves a random number on the stack. (Of course, the number
displaged will most 1ikely be different from the one shown
above.

Using Words

Now that we've introduced a whole slurry of words, let's put them
to use.

For these examples, we'll assume the stack is empty before
beginning. There are a few ways to empty the stack. With the
stack display on, you can type either DROP or "." repeatedly
until the stack display shows the stack is empty.

Another way to clear everything is to type the word ABORT. ABORT
restarts GraFORTH, resetting things back to their initial
conditions. ABORT can be handy when used from the keyboard, but
if executed from a running program, it stops the program
immediately. (There is an exception to this which will be
discussed fn Chapter 5.)

STARTING GraFORTH 3-11

As you've already seen, the way to add two numbers is to enter
the numbers first, then type "+".

Ready 3 4 + .
7
Ready

This notation, where the numbers precede the operator, is called
Postfix, or Reverse Polish Notation, and is used in all versions
of Forth, as well as in most Hewlett-Packard calculators. Its
main advantage over "standard" notation is that complicated
expressions can be evaluated without having to use parentheses.
For example, if you wanted to add 3 and 5 together, add 7 and 9
together, then multiply their sums in a language like Basic, you
would type:

X=(3+5)*(7+9)

Note that since Basic always multiplies before adding,
parentheses were needed to group the sums together. In GraFORTH,
you can solve the problem this way:

Ready 3 5

[3]
(5]
Ready +

[8]
Ready 7 9

This example was "unfolded" so you can see exactly what is
happening on the stack. Usually, the entire expression is
entered on one line:

STARTING GraFORTH 3 -12

Ready 3 5+79 +*,
128
Ready

To find the cube of a number, you can type the number three times
and multiply:

Ready 3 33 * *
27

Another way is to type the number once and use DUP to duplicate
it:

Ready 3 DUP DUP * * ,
27

DUP allows you to use any number without having to enter it
repeatedly. This will be very useful for general purpose
operations inside programs.

Printing Text

Printing text in GraFORTH is straightforward: type the word
PRINT, the word " (quote), the text to be printed, then another
quote: ;

Ready PRINT " SUPER ZAPPO SPACE GAME "
SUPER ZAPPO SPACE GAME

Ready

Since the guote is a GraFORTH word, the spaces between the quotes
and the text are required. Note that you can use quotes within
the quoted text, as long as it is not separated on both sides
with spaces:

Ready PRINT " THIS IS THE "BEST" GAME EVER! "
THIS IS THE "BEST" GAME EVER!
Ready

Since PRINT does not automatically print a space or a carriage
return at the end of the text, two other handy words to know are
SPCE and CR. SPCE prints a space, and CR issues a carriage
return. Notice the difference in the following three examples:

STARTING GraFORTH 3 -13

Ready PRINT " FIRE " PRINT " ONE "
FIREONE

Ready PRINT " FIRE " SPCE PRINT " TWO "
FIRE TWO

Ready PRINT " FIRE " CR PRINT " THREE "
FIRE
THREE

Printing text is not very useful if the system only prints the
text immediately then forgets it. Fortunately, GraFORTH can do
much more than that.

Defining New Words

The power of GraFORTH as a language lies in the ability to define
new words in terms of old ones. In fact, writing "programs" in
GraFORTH is done by simply defining a series of new words which
accomplish the desired task. These new words are added to the
word library and can be seen by typing the word LIST. In this
way, the GraFORTH language itself (of which the word library is a
part) "expands" to become your program!

New words are created with ‘colon definitions' (so named because
they begin with a colon). The form for a colon definition is:

: <word named> <string of defining words> ;

The colon tells the system to begin a new word definition. The
name that immediately follows the colon will be the name of the
new word. The words that follow the name make up the
"definition" of the word; they are the words to be executed
whenever the defined word is typed. These words behave just as
if they had been typed in directly at the keyboard. The
semicolon marks the end of the colon definition, and causes the
word to be compiled into machine language and added to the word
library.

As an example, let's define a word that adds two numbers then
prints their sum along with a short message:

Ready : SUM PRINT " THE SUM IS " + . ;

STARTING GraFORTH 3 -14

Following the form for colon definitions, SUM is the name of the
new word, and

PRINT " THE SUM IS " + ,

is executed whenever the word SUM is entered. The word PRINT
causes the phrase "THE SUM IS" to be printed, the + adds the top
two numbers on the stack, and the period prints the sum. (Note
that there are two spaces between the word IS and the quote, so
that a space wiTl appear between the text and the number.) Now
let's try our new word:

Ready 25 31 SUM
THE SUM IS 56
Ready

LIST the word library, and you'll see that the word SUM has been
added:

Ready LIST

SUM
CHS
SGN
CALL

A nice addition to this word would be to reprint the numbers
being added. But before we commit ourselves to a colon
definition, let's try it "live", where we can watch things one
step at a time:

Ready STACK
Ready 25 31

[25]
(31]

We need to make copies of the two numbers: one set will be
reprinted on the screen, and other set will be added together.
(Remember that many GraFORTH words consume numbers from the
stack, so we need to have the numbers ready to "feed" them!) The
quickest way to copy a pair of numbers is by using OVER OVER:

STARTING GraFORTH 3-15

Ready OVER

[25]
[31]
[25]
Ready OVER

[25]
[31]
[25]
[31]

Now let's reprint the first set of numbers along with some
informative text:

Ready PRINT " THE SUM OF " .
THE SUM OF 31

[25]

[31]

[25]

Ready PRINT " AND " , PRINT " IS "
AND 25 IS

[25]

(31]

Now let's add the numbers...

Ready +
[56]

«..and print the sum:

Ready .
56

Now let's put it into a colon definition, with a different name.
Note that you can enter the definition over several lines (if you
like).

Ready : SUM1

Ready OVER OVER PRINT " THE SUM OF " .

Ready PRINT " AND " .

Ready PRINT " IS "+, ;

STARTING GraFORTH 3-16

After entering the definition, the word SUMl is also on the word
library:

Ready LIST

SUM1
SUM
CHS
ABS

Ready 25 31 SUM1
THE SUM OF 31 AND 25 IS 56

SUM1 can now be called at any time, from either the keyboard or
another word definition, as easily as any of the original
GraFORTH words in the word library.

Note: As you write and enter colon definitions, be sure to enter
a semicolon to finish the definition! If you don't, GraFORTH
will assume that everything you type is part of a word to be
executed at a later time. If GraFORTH ever responds to words
1ike LIST with only a "Ready" prompt, you've probab1y left a
semicolon out of colon definition.

Forgetting Words

You can see that if we keep on defining new words, the word
library will continue to grow until we use up all of the memory
available. Sometimes words are no longer needed, or a word might
contain a mistake (???). In either case, to delete one or more
words, the word FORGET is used. It takes the form:

Ready FORGET <wordname)

FORGET cannot selectively remove words from the middle of the
word library. It only truncates off the top, deleting the
specified word and every word above it. In our example, to
delete both SUM and SUM1, type:

Ready FORGET SUM

STARTING GraFORTH 3 -17

Ready LIST

CHS
ABS
SGN

Notice that both SUM and SUM1 were removed from the word library.

Had there been more words above them, they would also have been
removed.

Note: You will not get an error message if you try to FORGET a
word that is not in the word library. This makes implementing
program ‘overlays' easier. (Overlays will be discussed in
Chapter 5.) However, if you misspell the word you want to
forget, then no words will be deleted from the word library.
Thus, it's a good idea to use LIST to verify that the right word
or words have been deleted.

STARTING GrafFORTH 3 -18

Looping Structures

The GraFORTH DO - LOOP construct is available for repetitive
tasks where the number of repetitions is known ahead of time.
The form for a DO - LOOP is:

<ending value> <initial value> DO <words to be repeated> LOOP

The word DO removes two values from the stack. The top number is
used as an 'initial value' and the next number is used as an
‘ending value'. The words between DO and LOOP are executed, then
the initial value is incremented by one. If this incremented
value (which we'll call the 'loop value') is stil11l less than the
ending value, the program loops back to execute the words between
DO and LOOP again. This cycle is repeated as long as the loop
value 1s less than the ending value.

If you are familiar with Applesoft Basic, you will notice that DO
- LOOP is similiar to Applesoft's "FOR -- NEXT" looping
structure.

It is often handy to retrieve the current loop value. Inside the
DO - LOOP, the word "I" retrieves the loop value and places it on
the stack. Here is an example:

Ready 5 0 DO PRINT " HERE IS NUMBER " I . CR LOOP
HERE IS NUMBER O
HERE IS NUMBER 1
HERE IS NUMBER 2
HERE IS NUMBER 3
HERE IS NUMBER 4

"5 0 DO" sets up the looping structure for 5 loops. Inside the
loop, the phrase "HERE IS NUMBER" is printed, then the loop value
is retrieved by I, then printed with “.". CR causes the carriage
return to put each number on its own line, and LOOP marks the end
of the loop, causing the loop value to be incremented and
compared with the ending value. Note that the loop continues
only as long as the loop value is less than the ending value.
That's why the loop stops at 4, not B as in Applesoft.

STARTING GraFORTH 3-19

The words DO and LOOP work as a pair and must always be matched
up, either on the same line together or entered in a colon
definition. Typing DO or LOOP alone can have nasty and
unpredictahle results.

To make a loop with an increment other than 1, use +LOOP instead
of LOOP. +LOOP removes a number from the stack to use as the
increment. This number can be either positive or negative (for
loops that count backwards). Here is an example:

Ready 10 0 DO I . CR 2 +LOOP

oL NO

The 2 was used by +LOOP as the increment.
Ready 150 200 DO T . CR -10 +LOOP

200

190

180

170
160

Loops can be nested inside one another. The loop value for the
current innermost loop is always accessed by "I", and the loop
value for the next outer level is accessed with the word "J", as
in this colon definition:

Ready : DOUBLELOOP

Ready 4 0 DO

Ready PRINT " OUTER LOOP: " I . CR

Ready 300D0

Ready J.SPCETI . CR

Ready LooP

Ready LOOP ;

STARTING GraFORTH 3 -20

Ready DOUBLELOOP
OUTER LOOP: O
00

01

02

OUTER LOOP: 1
10

11

12

OUTER LOOP: 2
20

21

22

OUTER LOOP: 3
30

31

32

The inner loop 1s cycled three times for each cycle of the outer
loop. Note that the outer loop value is referenced in the outer
loop with "I", but is referenced from the inner loop with "J".
Just remember that "I" always references the loop value for the
current innermost loop.

If more than two nested loops are being used, the loop value of
the third loop out can be accessed from ifnside the innermost loop
with the word "K".

The Return Stack

DO - LOOPs make use of another stack in the GraFORTH system,
similar to the data stack, known as the 'return stack'. The
return stack can also hold 128 numbers, though for most programs
it rarely contains more than a few. (Most versions of Forth,
because they are interpreted, use the return stack for a variety
of purposes. Because GraFORTH is compiled directly fnto machine
language, the Apple's processor itself takes care of these
things.)

When the word DO is encountered, the top two values on the data
stack are moved over to the return stack, with the loop value on
top and the ending value underneath. The word LOOP increments
the loop value on the return stack. The word "I" places a copy
of the top return stack value and places it on the data stack.
When the loop is finally exited, the two return stack values are
removed.

STARTING GraFORTH 3-21

There are a few words in GraFORTH that enable you to use the
return stack directly. The return stack can be a handy place to
put numbers for a moment while playing games with other numbers
on the data stack. (In Chapter 5 we'll show you how to declare
variables for more permanent storage.) Care should be taken to
avoid disturbing the value and placement of existing return stack
entries when using N0 - LOOPs. (In other words, if you're not
sure, don't!) Here are the words that directly control the
return stack:

PUSH moves the top data stack entry to the return stack.
PULL moves the top return stack entry back to the data stack.
POP removes the top return stack entry. The number is lost.

Suppose there are three numbers on the stack and you want to
reverse the order of the bottom two. Here is one way to do it:

[3]
[2]
(1]
Ready PUSH

(3]
[2]
Ready SWAP

[2]

(3]
Ready PULL

STARTING GraFORTH 3 - 22

Comparing Numbers

A number of GraFORTH words are devoted to comparing numbers.
These words are:

< (not equal to)

= Eequal to)

> greater than)

< (1ess than)

>= (greater than or equal to)
<= (less than or equal to)

Each of these words removes two numbers from the stack, comparing
the second stack number down with the top stack number, and
returns on the stack either a 1 if the comparison is true, or 0
if the comparison is false. Here are a few examples:

Ready 5 5 =
1
Ready 5 7 = .
0

Ready -32 -6 € .
1

Ready 45 46 >= .
0

A couple of other words related to the comparison words are AND
and OR. These words remove two numbers from the stack and
perform a logical operation between each of the 16 bits of the
numbers, returning another number to the stack.

AND performs a bitwise "AND" between the two stack values; OR
performs a bitwise "OR". Don't worry if you're unfamiliar with
the relationships between numbers and their bits. Usually the
importance of AND and OR is between the numbers zero and one:

If both the top stack value and the second stack value are 1
(representing a "true" condition), then the AND of the two
numbers will also be 1. If either or both numbers are zero
(representing a "false" condition), then the AND will also be
zero.

STARTING GraFORTH 3-23

If either the top stack value or the second stack value are 1,
then the OR of the two numbers will also be 1. Only when both
numbers are zero will the OR operation be zero.

AND and OR are useful for combining the results of two or more
tests. The following example tests whether or not a given number

is greater than 5 and less than 10. We'll test with two numbers,
7 and 3:

Ready DUP 5 > -
[13]

(1]

Ready SWAP
[1]

[13]

Ready 10 ¢
[1]

(0]

Ready AND
(0]

13 is not greater than 5 and less than 10.

STARTING GraFORTH 3 - 24

Decision and Branching Words

An essential part of a computer language is the ability to test a
condition, then make a decision on the basis of the test.
GraFORTH has five different constructs that accomplish this.

Each of the constructs contains a word which removes a number
from the stack. In most cases, the "decision" is made on the
basis of whether the number is zero or nonzero. Any nonzero
number represents a condition being true, and a zero represents
false. (Note that the above comparison words place a one on the
stack if the comparison is true, and zero if the comparison is
fatse.)

A simple flowchart 1s included with each of the following
constructs, showing the "flow" of the program. The arrows
indicate what is executed in what order. The boxes represent a
group of words to be executed. The diamonds represent a test,
usually for a zero or nonzero number.

Note: Each of these constructs is made up of two or more words.
Like DO - LOOP, these decision words work together, and cannot be
entered alone. They must be entered either on one 1ine or from
within a colon definition.

IF - THEN

The simplest decision construct is IF - THEN. The form for IF -
THEN 1is:

{stack test value> IF
<words to be executed>

THEN

The word IF removes a number from the stack. If the number is
not zero, then the words between IF and THEN are executed. If
the number is zero, then the words between IF and THEN are
skipped over. In either case, the program continues on after the
word THEN. The flowchart for IF - THEN follows on the next page:

STARTING GraFORTH 3-25

test ———— IF

0

words

THEN

Let's use IF and THEN in a couple of colon definitions:
Ready : TEST1

Ready PRINT " THE NUMBER IS "

Ready IF PRINT " NOT " THEN

Ready PRINT " ZERO. " ;

The first and third PRINT words are executed every time. The
word IF removes a number from the stack (which we'll supply
before we execute TEST1). If the number is nonzero, then

PRINT " NOT ", which is sandwiched between the IF and THEN, is
executed. If the number is zero, then it is not executed.

Ready 5 TEST1
THE NUMBER IS NOT ZERO

Ready 0 TEST1
THE NUMBER IS ZERO

IF -~ THEN constructs can be used with number comparison words.
Remember that these words return either one or zero, depending on
the success or failure of the comparison. Suppose that for some
application, you want to set a 1imit on the size of numbers. The
following word will let any number less than 25 pass through
"unharmed", but any number over 25 will be replaced with a 25:

STARTING GraFORTH 3-26

Ready : UPPERLIMIT
Ready DUP

Ready 25 > IF
Ready DROP 25
Ready THEN ;

The word DUP makes a copy of the top stack value. The word ">"
compares the copy with the number 25, leaving a one on the stack
if the number 1s greater than 25, or a zero if it is not. The
word IF removes the one or zero from the stack to decide whether
or not to execute the following words. Remember that the
original number is still on the stack. If the comparison is
false, then the words between IF and THEN are not executed, and
the number is left intact. If the comparison is true, then DROP
25 1s executed, which removes the original number from the stack
and replaces 1t with 25.

Ready 16 UPPERLIMIT .
16

Ready 37 UPPERLIMIT .
25

Ready

IF - ELSE - THEN

Another version of the IF - THEN construct is IF - ELSE - THEN.
The form is:

{test stack value>
IF

<words executed if nonzero>
ELSE

<{words executed if zero>
THEN
As before, the word IF removes a number from the stack. However,
if the number is nonzero, then the words between IF and ELSE are
executed. If the number is zero, then the words between ELSE and
THEN are executed. The program then continues after the word
THEN. The flowchart for IF - ELSE - THEN follows on the next
page.

STARTING GraFORTH 3 - 27

14X
words
A ELSE
words
<_—| THEN
Ready : TEST2 V

Ready DUP 100 > IF

Ready . PRINT * IS GREATER THAN 100 "
Ready ELSE

Ready . PRINT " IS LESS THAN OR EQUAL TO 100 "
Ready THEN ;

Again, we've duplicated the number before comparing so that we
could print it later, using one of the two periods inside the IF
- ELSE - THEN. Also note that the controlled words are indented.
This is certainly not a requirement, but it greatly improves the
readability of the word definition. (In the next chapter, we'll
show you how to use the text editor to save the text of the word
definitions.)

Ready 106 TEST2
106 IS GREATER THAN 100

Ready 54 TEST2
54 IS LESS THAN OR EQUAL TO 100
Ready

As with loops, IF - THEN constructs can be nested. This example
puts checks for both upper and lower limits on a number:

STARTING GraFORTH 3 - 28

Ready : TWOLIMITS

Ready DUP 25 > IF

Ready PRINT " GREATER THAN 25 *“
Ready DROP

Ready ELSE

Ready 10 < IF

Ready PRINT " LESS THAN 10 "
Ready ELSE

Ready PRINT " BETWEEN 10 AND 25 "
Ready THEN

Ready THEN ;

One IF - ELSE - THEN is placed between the ELSE and THEN of
another one. Note that before the first comparison, we DUPlicate
the number because we don't know yet whether or not it will be
needed for the second comparison. If the number is greater than
25, then it 1s not needed again, and is DROPped.

Ready -62 TWOLIMITS
LESS THAN 10

Ready 19 TWOLIMITS
BETWEEN 10 AND 25

Ready 684 TWOLIMITS
GREATER THAN 25

BEGIN - UNTIL

Another construct that allows repeated execution is BEGIN -
UNTIL. The form is:

BEGIN
<words to be repeated>
<test stack value>
UNTIL

STARTING GraFORTH 3-29

The word BEGIN marks the beginning of the construct. The words
between BEGIN and UNTIL are executed, then the word UNTIL removes
a number from the stack. If the number is zero, then the program
branches back and the words between BEGIN and UNTIL are executed
again. This loop is repeated until the stack value is nonzero,
then the program continues past the UNTIL. This is the flowchart
for BEGIN - UNTIL:

BEGIN

words

st 5 JUNTIL

<0
/
The following example starts with a zero on the stack, then
prints the number, adds 1 to it, then loops back until the number
equals 8:

Ready 0 BEGIN DUP , CR 1 + DUP 8 = UNTIL

DL WN-O

7

(8]

Ready

The words "DUP . CR" print the number without losing it and
issue a carriage return; "1 +" increments the number; and

"DUP 8 =" determines if the number equals 8. Notice that this

loop leaves a copy of thé number on the stack when it finishes.
Adding DROP to the end of the line takes care of this.

STARTING GraFORTH 3 - 30

BEGIN - WHILE - REPEAT

The BEGIN - WHILE - REPEAT construct is similar to BEGIN - UNTIL.
The form is:

BEGIN

<{words to be repeated)

Ctest stack value)
WHILE

<controlled words>
REPEAT

The word BEGIN again marks the beginning of the construct. The
words between BEGIN and WHILE are executed, then WHILE removes a
number from the stack. If this number is nonzero, then the
controlled words between WHILE and REPEAT are executed, then
execution jumps back again to the words after the BEGIN. If the
number is zero, then the program jumps directly past the word
REPEAT and continues on. The key to remembering this is that the
controlled words are REPEATed WHILE the stack value remains
nonzero. This is the flowchart for BEGIN - WHILE - REPEAT. Note
that the test is at the beginning of the controlled part:

BEGIN

rost >0 WHILE

($10)

words

. |}
——— REPEAT
v

The following example 1s similar to the previous example for
BEGIN - UNTIL. The number 1s tested first this time. While it
is not equal to 8, it 1s printed and incremented, and the cycle
is repeated:

STARTING GraFORTH 3 -3

Ready O BEGIN DUP 8 <> WHILE DUP . CR 1 + REPEAT

AN HEWN=O

7
(8]
Ready

CASE: - THEN

Sometimes a choice needs to be made from a range of possible

numbers. The CASE: construct allows you to do this. The form
is:

¢{stack value>

CASE:

<word 0>
<word 1>
<word 2>

.

<word n>
THEN

The word CASE: removes a number from the stack and uses this
number to select and execute a single word from a 1ist of words.
A zero selects word 0, a one selects word 1, etc. The word THEN
marks the end of the CASE: construct, and is required. The
flowchart for CASE: follows on the next page:

STARTING GraFORTH 3 - 32

yes

=07 word O CASE:
no
c7) B word 1
no
1) = word 2
Ino v
| L] word n
THEN
v

The following example shows how CASE: works:
Ready : X PRINT " THE NUMBER IS ZERO " ;
Ready : Y PRINT " THE NUMBER IS ONE " ;
Ready : Z PRINT " THE NUMBER IS TWO " ;
Ready : CASE.TEST

Ready CASE:

Ready X
Ready Y
Ready z
Ready BELL

Ready THEN ;

X, Y, and Z are words we have defined and are called by the word
CASE.TEST. The CASE: 1ist in CASE.TEST contains four words, so
the construct uses the numbers 0 through 3. Zero selects X, 1
selects Y, 2 selects Z, and 3 selects BELL:

STARTING GraFORTH 3-33

Ready O CASE.TEST
THE NUMBER IS ZERO

Ready 1 CASE.TEST
THE NUMBER IS ONE

Ready 2 CASE.TEST
THE NUMBER IS TWO

Ready 3 CASE.TEST
(The Apple speaker beeps.)

Warning: If the number which CASE: removes from the stack is too
large or is less than zero, something strange and probably
not-so-wonderful will happen. For example, the system may hang
up. (In the above example, the only acceptable numbers for
CASE.TEST are 0, 1, 2, and 3.) The key to avoiding trouble is to
simply not let numbers out of the CASE: range go into the word
CASE:. There are a number of ways to do this. Here is one for
the above example:

Ready : SAFE.CASE

Ready DUP DUP 3 <= SWAP 0 >= AND

Ready IF

Ready CASE.TEST

Ready ELSE

Ready PRINT " THE NUMBER IS NOT BETWEEN D AND 4 "

Ready DROP

Ready THEN ;

SAFE.CASE first checks the number to see that it is between 0 and
4 before passing it on to CASE.TEST. If it is out of range, a
message is printed. (You may want to try the words “"DUP DUP 3 <=
SWAP 0 >= AND" directly from the keyboard to see how they work
together).

Ready 2 SAFE.CASE
THE NUMBER IS TWO

Ready 7 SAFE.CASE
THE NUMBER IS NOT BETWEEN O AND 4

STARTING GraFORTH 3 - 34

Ready -6 SAFE.CASE
THE NUMBER IS NOT BETWEEN O AND 4

Program Structure and
Other Miscellaneous Thoughts

Notice that in the last example for CASE: above, we began by
defining three short words: X, Y, and Z. Then we defined the
word CASE.TEST, which calls one of those three words. Finally we
defined SAFE.CASE, which calls CASE.TEST.

This "chain" of definitions is the way long programs in GraFORTH
are built up. The 'low-level' words, which usually do rather
menial tasks, are defined first. Then the next level of words,
which call the first set of words, are defined. This process
builds layer by layer until one last word is added to the top of
the word library, which "coordinates the show". The entire
program can be run by simply typing the name of this top word.

The beauty of this scheme is that each level of words can be
thoroughly tested and debugged before moving on to the next
higher level. This helps to prevent the all-too-familiar scene
of the programmer helplessly wading through miles and miles of
computer print-out trying to find the elusive "bug" in a program.

Another advantage is that with separate word definitions, you can
have more than one "“program" in memory at a time. Words can be
defined completely independently of each other, and used as
individual programs or routines.

.s..Which brings us back to some specific points on GraFORTH.

Word References

Words in GraFORTH can only be defined in terms of already
existing words, which reside in the GraFORTH word library at the
time. In fact, any reference to a word that is not currently in
the word library will produce an error message, and the unknown
word will he ignored:

Ready 5 0 N0 I . CR STRANGE LOOP

STARTING GraFORTH 3-35

STRANGE Not Found (Press Return)

Another source of trouble is defining a word with the same name
as an already existing word. If this happens, the new word is
added to the word l1ibrary, but a warning message is printed:

Ready : OVER PRINT " OVER THE RIVER AND THRU THE WOODS " ;
OVER Not Unique (Return)

With two words with the same name in the word library, how does
the system choose between them? For our example, any words that
referenced OVER before the new definition was added will still
reference the earlier word. Any new references to OVER will
reference the new definition. That means that the original
definition is no longer accessible from the keyboard! In
general, defining words with existing word names is not a good
idea and should be avoided.

Programmers who 1ike to dabble with recursion will be happy to
hear that GraFORTH words can call themselves. Word definitions
can also be nested one definition inside another, allowing the
inside and outside words to call each other. These capabilities
are very useful in certain recursive applications, but should be
avoided if not needed. (Your programs can get hard for people to
follow!)

Speed and Flexibility vs. Error Checking

GraFORTH is a very fast language. It has to be to manipulate 3-D
images at the speeds it does. GraFORTH is also very flexible.

As you'll see in Chapter 6, GraFORTH gives you direct control of
your Apple.

You may be asking, "What's the catch?" The "catch” is that
GraFORTH has little built-in error checking. In terms of speed,

if your program works correctly, then repetitive error checking
schemes can only slow your program down.

STARTING GraFORTH 3 - 36

In terms of flexibility, i1f you're allowed to do nearly anything,
then there is nothing "to protect you from". GraFORTH follows
the Forth convention that if you want error checking, you'll
write 1t into your programs. If you don't need error checking,
you don't have to include it.]

One example is 'stack underflow and overflow'. Stack underflow
i{s where a word tries to remove a number from the stack and the
stack is empty. If this happens, GraFORTH will merely return the
number that was last on the stack. Stack overflow is caused by
trying to place more than 128 numbers on the stack. If this
happens, the extra numbers are ignored. If a stack underflow
occurs when the stack display is on, a long stream of stack
numbers may be displayed. If this happens, just type ABORT to
clear the stack. (The key to avoiding stack problems is to be
aware of what 1is happening on the stack at all times. Sometimes
"single-stepping" through a 1ist of words with the stack display
on can help.)

Another example of error checking 1s with words that “expect" a
number in a given range. We've seen this already with the word
CASE:. Many words in GraFORTH use numbers in a specified range.
Some words don't mind the excess; they "fold" the number back
into an appropriate range and ignore the difference. Other words
(1ike CASE:) do not fold back, and must be given a valid number.
As we fntroduce words, we'll include any valid ranges.

‘Words Which Look Forward

Most words in GraFORTH look to the stack for any data or
information they might need. Some words, 1ike PRINT or FORGET,
look forward down the input 1ine for further data. You might be
tempted to build a colon definition like the following:

Ready : TESTWORD CR CR PRINT ;

Ready TESTWORD " HI THERE "

Don‘t try it! The word PRINT looks for the text to be printed as
it is compiled, not when it is executed. The above example wilT
not work, and it may cause the system to go off the deep end...
The other words (introduced in later chapters) which look to the

input 1ine for data work the same way, and should be used as
described.

STARTING GraFORTH 3 - 37

Text Vs. Graphics

Since the Apple graphics screen is used for the normal GraFORTH
display, mixed text and graphics, changeable character sets, and
lower case displays can all be used in GraFORTH. However, text
scrolling is not as fast as it would be on a standard text
display. GraFORTH includes two words, GR and TEXT, which enable
you to switch between the graphics display and a text-only
display. The only advantage to using the text display is for
faster scrolling, which can occasionally come in handy when
editing files from the editor.

Memory Considerations

Because of the large number of features implemented in GraFORTH,
and the fact that both graphics screens are being used, free
memory for program development is somewhat limited. The presence
of a language card or RAM card eases this limitation
considerably. The memory map in Appendix B shows the available
free memory with and without a language card, and with or without
the text editor in memory. Memory considerations when using the
text editor will be discussed in the next chapter.

The way to keep memory free is to always FORGET words that are no
longer needed. Loading one large program onto the word library
above another is a sure way to run out of memory. Be aware of
what is on the word librarv, and how much memory is being used.

There are two words to help you:

The word PRGTOP places the address of the top of the word library
on the stack. This can let you know how large things are
getting. This example was done with no additional words on the
word library. (The addresses printed here are for example
purposes only. The address numbers displayed may be slightly
different.)

Ready PRGTOP .
-32256

STARTING GraFORTH 3 - 38

For people who "think" in hexadecimal, the word $LIST can also be
very useful. $LIST is identical to LIST, except that it also
displays the hexadecimal addresses of each word in the word
library. By comparing adjacent numbers, you can determine how
much memory each word takes. Here is a sample of a $LIST:

Ready $LIST

$8254 CHS
$8246 ABS
$8224 SGN
$81F4 CALL
$81E9 PREG
$81DE YREG

Since $LIST displays the address at which each word begins, the
first address shown is the beginning of the top word, not the top
of the word 1ibrary at the end of the word. To determine the
address of the top of the word library in hexadecimal, you can
define a "dummy" word and then use $LIST. The top address will
be the top of the word library after the dummy word is deleted:

Ready : IT ; ("IT" does not execute anything.)
Ready $LIST
$826E IT

$8254 CHS
$8246 ABS

Ready FORGET IT

$826E is the hex address of the top of the word library.

STARTING GraFORTH 3-3

Conclusion

Let's take a break here, and digest some of this information.
This might be a good time to grab a pizza, take a nap or come out
of hiding and visit someone who hasn't seen you in a few days!
Anyway, when you come back we'll move into the text aspects of
GraFORTH and introduce you to the supplied GraFORTH text editor.

(We'll also show you some wonderful special characters to make
your Apple a little more friendly...)

STARTING GraFORTH 3 -40

CHAPTER FOUR: TEXT MAGIC

Chapter Table of Contents:
Purpose and Overview

Strange and Wonderful Characters

Upper and Lower Case
Hidden Characters
Cursor Movement
Line Insertions

The Text Editor

Line Entries

List

Autonum

Delete

Erase

Automatic Insertions
Insert

Save

Get

DOS Commands
Printing Files

Memory Considerations
Leaving the Text Editor

Program Compilation
Comments

Using the Editor with GraFORTH

TEXT MAGIC

Page

LLLLLL000ONOD
W20

PhbpbbpbbhbbbbL

Purpose and Overview

In Chapter 3, we learned (among other things) how to define new
words in terms of existing ones. The words were added to the
dictionary and could be called at any time. However, there was
no way to save the text of the definition; to go back to the
string of words which defined it.

" Enter the GraFORTH text editor, a straightforward general purpose
line-oriented editor. Text can be created here, modified, saved
to disk, read back in, and more.

GraFORTH includes words to compile text into the system from the
editor or directly from the disk. If any defined words need to
be modified, they do not have to be completely re-entered. They
can be changed from the editor, then recompiled by the system.

In this chapter, we'll discuss how to use the text editor and how
to compile GraFORTH programs from the editor or from disk. We'll
also give you some pointers to keep both system and editor memory
happy. But first, we should discuss some of the special
characters used in GraFORTH, both in and out of the editor, and
how they can help both your programming and your programs.

Strange and Wonderful Characters

Upper and Lower Case

If you've looked at the GraFORTH demonstration, you've seen all

these lower case characters on your Apple screen, but until now,
we haven't told you how to enter lower case characters yourself.
There's really no magic, as we'll soon see!

TEXT MAGIC 4 - 2

Upper and lower case can be set in a number of ways, and each is
a two-key process.

While entering a line, type ConTRolL-0, then

“E": Subsequent entries will be in lower case unless ESC is
pressed in advance. If ESC is pressed first, the
following character will be Tn upper case.

"S": Entries will be shifted to upper case if your Apple][
has the one wire shift key modification. (A wire

running from the shift key to the game paddle AN3 input).
"U": A1l entries will be in upper case.

“L": A1l entries will be in lower case.

“’Hidden Characters’’

Although the Apple][keyboard won't accept all the ASCII
characters, GraFORTH will. Here are the keys to press to get the
"hidden characters":

ConTRoL-Shift-N gives a left bracket
ConTRoL-Shift-M gives an underline
ConTRoL-Shift-P gives a reverse slash
Shift-M gives a right bracket unless one of the lower
case shift options has been set.

Cursor Movement

As you may have discovered by now, the Apple arrow keys work as
they do in most Apple applications: the left arrow is a
"backspace" key that enables you to back up on the line to
correct mistakes. The right arrow is a "retype" key. If you use
the right arrow key to move the cursor over text on the screen,
the text will be treated by GraFORTH as if it were being typed
again directly from the keyboard.

TEXT MAGIC 4 -3

The Apple ESCape codes for moving the cursor also work from
GraFORTH. These can be handy for making fast corrections from
the GraFORTH text editor. If you're unfamiliar with the Apple
ESCape codes, we suggest you consult one of the Apple manuals.
Most of the manuals discuss these codes.

Note: If any of the lower case shift modes have been set, then
the ESCape key cannot be used to move the cursor. To move the
cursor using ESCape, first set upper case only (ConTRoL-0, U)
shift mode.

Line Insertions

Insertions can be made into the middle of a line using ConTRoL-I.
Pressing ConTRoL-I pushes any characters to the right of the
cursor one more space to the right.

To make an insertion using ConTRoL-I, first use the Apple ESCape
codes to move the cursor to the beginning of the line to be
changed. Use the retype key to move the cursor to the point of
insertion, then press ConTRoL~I enough times to open up a space
in the line for insertion. Now enter the additional text, then
use the retype key to move the cursor to the end of the line, and
press <return).

Note: The ConTRolL-I feature works for editing only one
40-character line at a time. Pressing ConTRoL-I too many times
can push text off the right end of the screen and into
Never-Never Land....

The Text Editor

There are actually two text editors on the GraFORTH system disk,
named OBJ.EDITOR]1 and OBJ.EDITOR2, The first is used on systems
that do not have a lanquage card or RAM card and can edit about
2000 characters without changing the default settings. The
second is used with systems that have lanquage cards and can edit
about 11,500 characters. Otherwise, the two editors are
identical.

TEXT MAGIC 4 - 4

Note: GraFORTH and the GraFORTH editor both use standard DOS
text files for program storage. If you have a text editor that
you are accustomed to that also uses DOS text files, you may use
it instead of the GraFORTH editor. Large programs will be more
manageable in a text editor such as Apple- Writer 2.0, Compiling
programs into the GraFORTH system from disk is the same
regardless of what editor 1s used to create the file.

For the editor examples in this chapter, we will use English
sentences for text instead of GraFORTH programs. The editor
doesn't know the difference, and 1t makes things easier to read.
The editor is of course usually used for writing GraFORTH
programs. The GraFORTH word MEMRD, discussed in the next
section, allows text to be read and compiled directly from the
editor.

To enter the editor from GraFORTH, type EDIT. The appropriate
editor will automatically be loaded. In a few seconds you should
see the GraFORTH editor header:

GraFORTH J[Editor (C) 1981 P, Lutus

The first command to know in the editor is “?*, the question
mark., Entering a question mark gives you the Editor Command
Index, a list of all the other editor commands:

?

Save
Get
Insert
Delete
Program
Memory
List
Write
Erase
Autonum
Bye
ConTRol -D=D0S

We'l1l discuss each of these commands in turn, but first let's
find out how to enter text into the text editor.

TEXT MAGIC 4 -5

Line Entries

Entries to the text editor are preceded by line numbers. These
Tine numbers have no meaning to GraFORTH, and are not retained in
the program file when it is saved to disk. They simply serve as
an index to the file while it is in memory. The editor line
numbers are in steps of 10, and whenever insertions or deletions
are'made. the file is renumbered automatically, in steps of 10
again,

To enter a line, simply type a line number followed by the line.
Here are some example lines to enter:

10 My very first editor line!
20 Entering lines in the editor is
30 similar to entering lines in Basic.

LIST

To see that these text lines have been stored, they can be listed
by typing "LIST" or simply the letter "L". (A1l of the editor
canna?ds are single letters, and should be entered in upper

case.

L

10 My very first editor line!

20 Entering lines in the editor is

30 similar to entering Tines in Basic.

Done

(The "Done" message is printed whenever an editor command is
successfully accomplished. We're not going to show it in all of
our examples, though.)

Inserting 1ines in the text editor is much the same as in Basic.
Simply enter a line number between the line numbers you want the
text inserted into. Remember that after the insertion is made,
however, the 1ines will be renumbered in steps of 10. Let's
insert a line between line 10 and line 20 by giving it a line
number of 15:

15 With some important exceptions,

TEXT MAGIC 4 -6

Now let's list the file again to see that the line was inserted
and the following lines were renumbered:

L

10 My very first editor 1ine!

20 With some important exceptions,

30 Entering lines in the editor is

34 similar to entering lines in Basic.

If the file being edited gets rather long, you don't have to list
the entire file every time. The 1isting automatically stops
every 16 lines. If you press ConTRoL-C during the pause, the
listing will stop. If you press any other key, the 1isting will
continue. :

You can also use "List" to list a single line or a range of
lines. Assuming a file contains at least 15 lines (numbered 10
to 150):

L 80 1ists 1ine 80 only.

L 80,150 1ists lines 80 through 150.

L 80, lists from T1ine 80 to the end of the file.

L ,80 1i1sts from the beginning of the file to 1ine 80.

AUTONUM

The editor also provides automatic line numbering. Going back to
our original example, 1ist the file, then press “A" for
"Autonum". The next 1ine number, 1ine 50, will appear for you.
Enter a couple of lines with Autonum on:

A

50 This is much nicer than having
60 to enter the 1ine numbers myself.
70

To stop the Autonum feature, just press <return) at the beginning
of the 1ine after the 1ine number.

TEXT MAGIC 4 -7

To change a 1ine already in the editor file, simply retype the
1ine number followed by the corrected line. The ESCape codes and
the right-arrow key can be used to retype a line that is on the
screen, and ConTRoL-I can be used to make insertions within the
Tine.

Simply entering a 1ine number followed by <return> won't delete a
line, as is true for Basic. Instead this will create a blank
line, very useful in its own right for separating program
segments and word definitions. To make a blank line while the
Autonum feature is in use, enter a space, then press <return).

DELETE

The "D" ("Delete") command is used for deleting a line or range
of Tines. Its format is identical to "List" (though its effects
are very different!):

D 80 deletes only line 80.

D 80,150 deletes lines 80 through 150.

D 80, deletes from 1ine 80 to the end of the file.

D ,80 deletes from the beginning of the file to line 80.
ERASE

To erase the file in memory, press "E" for "Erase". A prompt
will appear:

Erase (Y/N) :

This prompt prevents inadvertent file erasure. Enter "Y' and
press Return to erase the file.

Automatic Insertions

In a previous example, we used Autonum to add to the end of the
file. When used in the middle of a file, Autonum also
automatically inserts the text, making room for the text and
renumbering later 1ines. For these examples, let's start with a
new file. Erase the file in memory, then enter a couple of
lines:

10 The first 1ine in the file...
20 The last line.

TEXT MAGIC 4 - 8

We can start an insertion by entering the first line number of
the insertion ourselves:

15 must surely be followed by others.

Now, pressing "A" will cause automatic 1ine numbering that starts
following the last entered 1ine, line 15, and insert this text
into the file. Since line 15 is renumbered to become line 20,
the next line number, printed with the Autonum feature, is line
30:

A

30 Autonum does more than generate
40 1ine numbers. It also inserts
50 into the middle of a file.

60

Again, Autonum is turned off by pressing <return> with no text.
Let's list the file now:

L

10 The first line in the file...

20 must surely be followed by others.
30 Autonum does more than generate
40 line numbers. It also inserts

50 into the middle of a file.

60 The last line.

INSERT

The "I" ("INSERT") command can also be used to initiate
insertions into a file. Instead of typing the first inserted
line before using Autonum, INSERT is used to specify the starting
line number. Let's delete the lines we just entered, and
re-enter them, this time using INSERT.

D 20,50
Done
L

10 The first line in the file...
20 The last line.

TEXT MAGIC 4 -9

We want to insert between lines 10 and 20, so enter:
115

Autonum will use this 1ine number as the point of insertion,
instead of the last accessed line.

A

20 must surely be followed by others.
30 Autonum does more than generate
40 Tine numbers. It also inserts

50 into the middle of a file.

60

List the file again, and you will see that these lines have been
re-inserted into the file.

SAVE

To save a file to disk, press "S". A prompt will appear:

S
(Filename) :

Enter the file name you want the file to be saved under. If
desired, you can also specify a disk slot and drive number here,
separated by commas using the standard DOS format. Here are a
couple of examples:

(Filename) : TESTFILE
(Filename) : TESTFILE,S6,D1

If you want to save only a portion of the file to disk, enter a
slash after the filename, followed by the range of line numbers
to be saved:

(Filename) : TESTFILE/80,150 (Saves lines 80 to 150)

(Filename) : TESTFILE/,80 (Saves beginning to 1ine 8n)
(Filename) : TESTFILE/80, (Saves 1ine 80 to end of the file)

TEXT MAGIC 4 - 10

GET

To get a file from disk and load it into the editor memory, press
"G". A prompt will appear:

G
(Filename) :

Enter the name of the file to be loaded and, if desired, the disk
slot and drive at which it is located, using the same format as
SAVE.

To get a file and insert it at a particular location in the
existing file, enter a slash after the filename, followed by the
destination line number in the current file. This example will
insert the file TESTFILE into the current editor file between
lines 110 and 120:

(Filename) : TESTFILE/115

Note: "GET" always inserts the file into the present memory
contents. The file contents are not erased by "GET". To erase
the present file and get a new one, "ERASE" the present file and
then "GET" a new one. Seems simple enough.

Note: Since "GET" and "SAVE" use slashes to specify certain
lines in a file, filenames that contain slashes cannot be used
with the text editor.

DOS Command's

To enter a DOS command directly from the editor, press ConTRoL-D
and <returnd>. A prompt will appear:

Enter DOS Command :

From this prompt, you can enter any DOS command, to get a
catalog, delete files, lock files, etc. The prompt repeats after
each DOS command so that you can execute several commands without
having to press ConTRoL-D every time. To return to the editor
prompt (a flashing cursor with no prompt 1ine), simply press
<return> twice.

TEXT MAGIC 4 - 11

Printing Files

Editor files can be printed directly from the editor. Type
ConTRoL-D and <return> to get the DOS prompt, then type "PR#1".
(If your printer is in another slot, substitute that number.)
The printer will be activated, then press{Return)twice to remove
the DOS prompt.

With the printer enabled, you can type "L" to list the file

to the printer, pressing <return> when the listing stops every 16
lines. A better way is to type "W" for "Write". This option
writes the editor file out without any pauses.

Since "PR#0" does not reconnect GraFORTH's special graphic
output, press Reset to turn the printer off and return to a
normal display. The next chapter includes a discussion on how to
access peripherals and return to GraFORTH in a normal manner.

Memory Considerations

As the GraFORTH word library grows, it can begin to use the same
memory that is used from the editor. If the word library is
large enough, adding words can erase a part of the editor file,
or even the editor program itself. Conversely, using the editor
can destroy the top of the word library, requiring the system to
be rebooted.

In addition, the amount of usable editor file memory is
determined by the presence or absence of a language card. We
suggest you study the memory map in Appendix B and become
generally familiar with areas of memory used by the GraFORTH
language, the editor program and the editor file in your system.

To find the amount of free memory left in the editor file area,
press "M" for "Memory". You will see:

Free Memory

followed by the number of bytes (or characters) of memory left.
You may want to adjust the amount of memory used by the text
editor, to avoid conflict with GraFORTH. To accomplish this, you

may position the file either up or down in memory. To do this,
press "P". A display will appear:

TEXT MAGIC 4 - 12

Program Length

Position

Free Memory

Change Position (Y/N) :

The length, position (starting address of the editor file area),
and memory labels will be followed by their present numeric
values. To change the editor file position, enter "Y" to this
option. You will be prompted:

Enter New Position :

On a language card system, the file position can be moved
somewhat higher to make more room for the GraFORTH word library.
On a non-language card system, there isn't as much memory above
the word library for editing. However, the program position can
be adjusted to allow editing of files up to 16,384 bytes. This
method will be outlined -in the next section.

Leaving the Text Editor

To leave the text editor and return to GraFORTH, simply type "B"
for "Bye".

Program Compilation

GraFORTH normally accepts its input from the keyboard. Each line
is compiled immediately and acted upon if necessary.

GraFORTH can also read lines from the editor file or from a disk
file, treating the lines as if they were typed from the keyboard.
GraFORTH programs can be written in the editor and saved to disk,
then read and compiled into the system.

The word to read and compile text from the editor buffer is
MEMRD. MEMRD removes a number from the stack, interprets this
number as an address, and begins reading text from memory
starting at this address. It reads and compiles until it either
reads a zero byte (marking end-of-file) or encounters an error.
Control is then returned back to the keyboard.

The address of the editor file buffer is 34817, unless changed

with the Program Position option in the editor. To read the text
from the editor, type:

TEXT MAGIC 4 - 13

Ready 34817 MEMRD

To read and compile directly from a text file, the word READ is
used. The form for READ is:

READ " ¢filename) "

READ reads to the end of a file, or until an error is
encountered.

MEMRD and READ are usually used to compile word definitions into
the word library, but immediate-execution lines can also be
included.

Comments

Usually, the GraFORTH Editor is used for writing and editing
GraFORTH programs instead of the text used earlier in this
chapter. Comments in the source file of a GraFORTH program can
often be very helpful for understanding and keeping track of long

programs.

The GraFORTH word "(" is available for inserting comments into
program files. In compiling the program, when GraFORTH sees a
"(" set off with a space on either side, it ignores the rest of
the text on the 1ine until it sees a ")". Comments can be
inserted freely in the source file. Here is an example of such a
comment line:

10 (PARENTHESES AROUND A COMMENT)

Using the Editor with GraFORTH

When smaller programs are being developed, the editor and the
GraFORTH system can be used closely together. Load the editor
and enter the program, then return to GraFORTH and compile the
program with MEMRD. If the program has bugs or needs further
changes, simply return to the editor and make those changes.

When returning to GraFORTH, FORGET the original word definitions
before compiling the new ones, to prevent "Not Unique" errors
from occurring. (Unless you're testing a very short program. vou
should also save the program to disk after each edit.)

TEXT MAGIC 4 - 14

When larger programs are being developed and GraFORTH/editor
memory ‘conflicts are 1ikely, it's best to separate editing and
compiling. Use the editor to write the program, then save the
program to disk. Then return to GraFORTH and compile the program
with READ or MEMRD. If the program needs to be changed, FORGET
the words before returning to the editor, 5o that editor usage
won't erase the top of the word library. From the editor, reload
the program from disk and continue editing.

To edit larger programs, the area of memory from address 8192 to
24575 can be used for files up to 16,384 characters. This memory
is usually used by the two graphics screens, but can be used in
the TEXT mode for the edit file. Type "TEXT EDIT" to set the
TEXT mode and enter the editor. Then select a program position
of 8192 and edit the file as usual. Before leaving the editor,
always save the file to disk, as the graphics screen memory will
be erased when GraFORTH is re-entered. Using the graphics
screens for editor memory may also cause GraFORTH to become
inoperable. If this happens, merely reboot GraFORTH after
editing.

Understanding and following the above guidelines will protect you
from memory conflicts, and will make programming in GraFORTH much
easier.

As you become more comfortable with programming in GraFORTH, you
will probably want to use the editor to list some of the program
files on the system diskette. We encourage you to do this. The
system- files provide excellent programming examples in GraFORTH.

TEXT MAGIC 4 - 15

CHAPTER FIVE: DELVING DEEPER. . .

Chapter Table of Contents:

Purpose and Overview
Text Formatting
Data Storage and Retrieval

GraFORTH Memory Addresses
Storage and Retrieval Words
Variables

Strings

Defining Strings

Using Strings

String Conversion

PAD: The System String

Accessing Individual Characters in Strings
String Words on Disk

Words Manipulating Individual Characters
Using Numbers in Other Bases
Using DOS From GraFORTH
Peripheral Card I/0

Program Control Words
Saving the GraFORTH System
Overlays

Moving Memory and
Retrieving Word Addresses

Calling Machine Language Routines
Compiling Number Tables

Leaving GraFORTH (gently)
Conclusion

DELVING DEEPER

Page
5-2
52

5-30
5-317
5-32
5-32
5-32

5-1

Purpose and Overview

Chapter 4 introduced GraFORTH as a language. In this chapter,
we'll round out the language and give you some of the background
you need before moving on to the graphics features ("What? You
mean this language has graphics too?!") in the next three
chapters.

We'll start off hy introducing the GraFORTH standard text
manipulation words (not to be confused with the fancy ones we'll
show you in Chapter 7). Then we'll discuss storing data in
memory, and the various words used to accomplish this. We'll
talk about the two other kinds of words in GraFORTH (variables,
and strings), and how they can be used to set aside memory for
data storage in very convenient ways. Following this will be a
discussion of the string operators built into the system and on a
disk file.

Next, we'll talk about using NDOS from GraFORTH, and introduce
SAVEPRG, the word that makes your work permanent. We'll tie up
the loose ends with a numher of words which are extremely useful,
but evade strict categorization.

Text Formatting Words

These are the words which are used to position text and
characters on the screen, and clear the screen, or portions of
ite Each of these words is straightforward.

Review

You have seen how to use PRINT, SPCE, and CR already in Chapter
3. For a quick review...

PRINT prints following quoted text starting at the current
cursor position.

CR issues a carriage return, moving the cursor to the
beginning of the next line.

SPCE prints a space.

DELVING DEEPER 5 -2

New Text Positioning Words:

HTAB removes a number from the stack, interprets it as a
horizontal cursor position, and tabs to that cursor
position. The cursor remains in the same vertical
position.

VTAB removes a number from the stack, interprets it as a
vertical cursor position, and tabs to that cursor position.
The cursor remains in the same horizontal position.

The valid ranges for HTAB and VTAB depend on the current
character size (CHRSIZE), which will be discussed in Chapter 7.
For the normal character size we are using now, the range for
HTAB is 0 to 39, and the range for VTAB is 0 to 23.

WINDOW removes four numbers from the stack to establish a text
window. The text window is a rectangular area on the
screen designed to protect other parts of the screen from
being overwritten. A1l text scrolling will occur inside
the window, leaving the rest of the screen unaffected.
The form for WINDOW is:

left> <width> <top> <bottom> WINDOW

Left, top and bottom are actual margins for the window. Width
specifies the right margin as the number of characters from the
left margin. The bottom margin number should reference the line
immediately below the window. For example, a window 10
characters wide by 5 lines high in the lower right corner of the
screen would be set by:

Ready 30 10 19 24 WINDOW
(The left margin is at position 30, the window width is 10

characters, the top margin is at line 19, and the bottom margin
is above line 24.)

DELVING DEEPER 5.-3

HOME erases the screen inside the text window.

CLEOP (CLear to End Of Page) erases the screen from the current
cursor position to the end of the text window.

CLEOL (CLear to End Of Line) erases from the current cursor
position to the end of the line.

ERASE erases the entire screen, regardless of the setting of the
text window. ERASE is usually faster than HOME.

Data Storage and Retrieval

GraFORTH has the capability of examining and changing the value
stored in any location in memory. If desired, the actual decimal
memory address can be entered from the keyboard for storage or
retrieval. We'll show you data access in this way first, and
then discuss an easier technique using named variables.

GraFORTH Memory Addresses

The Apple][contains 65536 addressable "locations". These
locations are usually numbered from 0 to 65535. Most of them are
used for RAM memory, which can be either read from or written to.
Each memory location can store one 8-bit 'byte', representing a
number from 0 to 255. Two locations, or two bytes, can store a
number from 0 to 65535. Since two bytes can only reference
positive numbers in the range 0 to 65535 and people sometimes
Tike to use negative numbers, one 'bit' of the number is used to
tell us the numbers sign, positive or negative. Therefore,
GraFORTH uses a number range of -32768 to 32767. Since it is
desirable that zero in both systems be zero, a "wrap-around"
scheme is used: Addresses ahove 32767 are treated as negative
numbers, and continue to increase until they again reach zero.
(This is identical to the system used by Apple's Integer Basic,
where a call to enter the system monitor must he done with a
negative number: CALL -151.) A diagram will best explain this:

DELVING DEEPER 5 -4

Positive GraFORTH

Decimal Addresses Decimal Addresses

0 0

1 1

2 2
32766 32766
32767 32767
32768 -32768
32769 -32767
32770 -32766
65533 3
65534 -2
65535 -1

Notice that both address ranges continually increase, except that
the GraFORTH addresses have a transition in the middle from
positive to negative numbers. The memory map in Appendix B
includes GraFORTH decimal addresses and hexadecimal addresses.

Storage and Retrieval Words

To store a number directly into a desired memory location, simply
place the number you want to store and the address where you want it
stored on the stack. Then type "POKEW". The word "POKEW"

stands for "poke-word" and removes two numbers from the stack,
interpreting them as value and address, and stores the data value

at the given location. Since GraFORTH numbers occupy two bytes
(commonly called a 'word', not to be confused with GraFORTH

words), it actually uses the given location and the one

immediately after it.

This example stores the number 12345 at location 2816 (which
happens to bhe the beginning of a large free area of memory in
GraFORTH):

Ready 12345 2816

[12345]

[2816]

Ready POKEW

Ready

DELVING DEEPER 5-5

To recall a number from memory and place it on the stack, place
the address of the desired memory location on the stack and type
"PEEKW". The word "PEEKW" stands for "peek-word" and removes a
number from the stack, interprets it as an address, retrieves a
number from that address, and places the retrieved number on the
stack. The following example recalls the number we just stored
in memory:

Ready 2816

[2816]
Ready PEEKW

[12345)]
Ready

To store a single-byte value to one memory location, the word
"POKE" is used instead of "POKEW". The form is the same. This
example stores the number 255 to location -28721:

Ready 255 -28721 POKE

The word "PEEK" is used to retrieve single bytes from memory.
The form for "PEEK" is the same as for "PEEKW". This example
reads a special Apple location that contains the current
horizontal cursor position:

Ready PRINT " Demonstrating PEEK " 36 PEEK
Demonstrating PEEK

(18]
Ready

Printing the phrase "Demonstrating PEEK" moved the cursor out to

position 18. Reading location 36 retrieved this position as a
number.

DELVING DEEPER 5-6

To summarize, here is a table of the four storage and retrieval
words:

Word Before After Description

POKEW mn - Sikes @ Puts two byte m into location n

PEEKW n - m- - Reads two byte m from location n
POKE mn - - - - Puts one byte m into location n

PEEK n - m- - Reads one byte m from location n
Variables

GraFORTH allows you to set aside space for number storage through
the word "VARIABLE", VARIABLE creates a new word and places it

on the GraFORTH word library. VARIABLE has two forms; the first

one is:

VARIABLE <variable name)

The variable name is the name of the word created and placed on
the word library. For example:

Ready LIST

CHS
ABS
SGN

.
L]

Ready VARIABLE TEMP
Ready LIST

TEMP
CHS
ABS
SGN

DELVING DEEPER 5 -7

The new word TEMP consists of two parts: a two-byte space set
aside for storing a number, and a call to an internal GraFORTH
routine that either places the value of the variable on the stack
or stores the stack value into the variable.

To store the number 12345 in TEMP, type:

Ready 12345
[12345]

Ready -> TEMP
Ready

The GraFORTH word "->" is a special word that says "store into".
It is created by typing a minus sign '-' followed by a right
arrow '>'. This word sets an internal flag used by variables to
determine if a "store" or a "recall" operation is to take place.
When the "=>" word is executed it sets this flag so the next
referenced variable will do a store, rather than a recalT. Note
that the variable will clear this flag so no special operator is
needed when doing a recall.

Therefore, to recall the value just stored in the variable TEMP,
just type its name:

Ready TEMP
[12345]

Whenever you need to recall the value of a variable, simply type
its name. To store a value into a variable, always type the
GraFORTH word ™->" before—typing the variable name.

Unless otherwise specified, when a variable is first created and
compiled using the word VARIABLE, the initial value of the
variable is zero. To give a variable a different initial value,
the other form of VARIABLE is used, where the initial value is
entered on the line with the declaration:

¢initial valued VARIABLE <variable name)

DELVING DEEPER 5-8

Ready 35 VARIABLE COUNT

COUNT will contain the value 35 until another value is stored
over it:

Ready COUNT .
35

Ready 87 -> COUNT
Ready COUNT .
87

We should bring up something important here. The word VARIABLE
(as well as STRING, which we'll discuss shortly) is a compiling
word, in that it produces new words itself. It is also a word
that looks forward down the input line for the word name. It

therefore must be used with more care than most GraFORTH words.

To be specific, a VARIABLE declaration cannot appear inside of a
colon definition. Tt must be alone on its own Tine, not mixed
with other GraFORTH words. Any initial value provided when—the
variable is declared is taken directly from the input line, not
from the stack. Since the initial value 1s not from the stack,

5 » the following line
wiltnoet work:

Ready 25 7 * VARIABLE THING

Strings

Strings in GraFORTH are words with space set aside for storing
characters or text, rather than numbers. Strings are used
whenever input is requested from the keyboard, or text has to be
manipulated in any way. String words are created with the word
STRING, and a number of words devoted to manipulating strings and
character data are included in GraFORTH. Additional words, for
more complex string tasks, can be found on a disk file called
"STRING WORDS", and can be compiled into the word library at any
time.

DELVING DEEPER 5 -9

Defining Strings

The word "STRING" is used to create words in the GraFORTH word
library that are used for string storage. The form for the word
STRING is:

{string sized STRING <string name>

The string name is the name of the word to be added to the word
library. The string size is a number specifying the number of
bytes, or characters, the string will hold. Remembering how
precious computer memory is, the string size should be just large
enough to hold whatever string data is expected to go into the
string. On the other hand, sufficient room must he allotted in
the string for any value ever stored into it. If you attempt to
store too much text into a string, you will actually damage the
GraFORTH word library. This will force you to reboot the entire
system from scratch! To increase speed, FORTH implementations
(GraFORTH included) typically do very little error checking.
Therefore it is up to you to determine beforehand the size string
you will need.

Similar to variables, string declarations draw both their string
name and string size from the input 1ine, and have the same
restrictions for use as variable declarations.

The following example creates a new word called TESTSTRING which
can store a string up to 45 characters long:

Ready 45 STRING TESTSTRING
Ready LIST

TESTSTRING
CHS
ABS
SGN

-

DELVING DEEPER 5 -10

GraFORTH strings are‘indexed from O to the string size-1. When a
string word is executed, the word removes a.number from the
stack, adds this number to the address of the beginning of the
string, then places this address on the stack. Note that strings
differ from variables in that a variable actually places its
value on the stack, while a string places the address of the
beginning of the string plus the specified index on the stack.
Getting the address instead of the value of the string may not
seem 1ike much fun, but in a moment we'll show you some powerful
words to move string information around!

In the following example, entering "O TESTSTRING" will place the
address of the beginning of the string on the stack. Entering "5
TESTSTRING" will place the address of character number 5 in
TESTSTRING on the stack. The last character position of
TESTSTRING is accessed with "44 TESTSTRING". Any portion of the
string can be accessed quickly in this way.

Ready O TESTSTRING .
-32241

Ready 5 TESTSTRING .
-32236

Ready 44 TESTSTRING .
-32197

Notice the addresses returned are negative. If you don't
understand why, be sure to turn back a few pages to the
discussion of GraFORTH memory addresses!

Note: The addresses we show are for example purposes. The
actual values may be slightly different.

Using Strings

In this section, we'll show you how to use those memory addresses
that strings leave on the stack. We'll ASSIGN text to a string,

and WRITE and READ lines of text to and from the Apple's screen
and keyboard.

DELVING DEEPER 5-11

To store text directly into a string (or anywhere in memory), the
word "ASSIGN" is used, with the form:

{string address> ASSIGN " <quoted text> "

ASSIGN removes a number from the stack, interprets it as a memory
address, then stores the text between the quotes into memory
starting at that address. Usually the address is supplied by
entering the name of a string before typing ASSIGN. Here is an
example:

Ready 0 TESTSTRING
[-32241]

Ready ASSIGN " SHE SELLS SEASHELLS "
Ready

The phrase "SHE SELLS SEASHELLS" has been stored into the string
TESTSTRING.

To write the contents of a string to the screen, the word
"WRITELN" is used. WRITELN removes a number from the stack,
interprets it as a memory address, then writes the text starting
at that address to the screen. The form of WRITELN is:

{string address> WRITELN

The following example writes the contents of the string
TESTSTRING to the Apple screen:

Ready O TESTSTRING WRITELN
SHE SELLS SEASHELLS

Text can be read in from the keyboard and stored in a string (or
anywhere in memory) using the word "READLN". READLN removes a
number from the stack, interprets it as a memory address, then
reads a line of text from the keyboard and stores the text in
memory starting at that address. Like WRITELN, the form of
READLN is:

¢string address> READLN

DELVING DEEPER 5 - 12

Here is an example:

Ready O TESTSTRING READLN
SEASHELLS (You type this line)
Ready

The phrase "SEASHELLS" has been read into the string TESTSTRING.

Ready O TESTSTRING WRITELN
SEASHELLS

0f course, assigning, reading and writing don't have to start at
the beginning of a string. Strings can be modified by reading
into the string, but starting in the middle of the string:

Ready 3 TESTSTRING READLN
SHORE

Ready O TESTSTRING WRITELN
SEASHORE

The word "SHORE" was read into TESTSTRING, starting at character
number 3, over the top of "SHELLS".

Ready 2 TESTSTRING WRITELN
ASHORE

The string was printed starting with character number 2, leaving
only the "A" in "SEA".

When a string is stored in memory using ASSIGN or READLN, a
carriage return is placed after the last character, marking the
end of the string. When WRITELN writes a string from memory, it
starts at the specified address and continues until it finds
either a carriage return or a byte containing a zero. Either of
these mark the end of a string for WRITELN.

DELVING DEEPER 5 - 13

String Conversion

Sometimes a string will contain a number stored as text. The
GraFORTH word "GETNUM" is used to read the number from the text,
placing the value on the stack. GETNUM removes a number from the
stack, again interpreting it as a memory address. It then reads
the text starting at that address and attempts to find a number,
which it places on the stack.

In the following example, the number 321 is first read into a
string as text, then converted to a stack value with GETNUM:

Ready 0 TESTSTRING READLN
321

Ready 0 TESTSTRING GETNUM
[321]

When using GETNUM, nonnumeric characters may follow the number
without interfering with the conversion, but the number must
begin as the first character of the string.

If GETNUM cannot find a number at the given string address, it
places a zero on the stack. To determine for certain whether or
not the string-to-numhber conversion was successful, the word
“"VALID" is used. VALID leaves a number on the stack. If the
last GETNUM was successful, the number will be nonzero; if the
conversion failed, VALID will return zero:

Ready N TESTSTRING REANLN
555

Ready 0 TESTSTRING GETNUM .,
555

Ready VALID .

253

(VALID is nonzero since GETNUM was able to convert the number.)
Ready 0 TESTSTRING READLN

YOU CALL THIS A NUMBER??

Ready 0 TESTSTRING GETNUM .

[t

Ready VALID .,
0

(VALID is zero since GETNUM failed to find a number.)

DELVING DEEPER 5 - 14

PAD: The System String

GraFORTH includes a predeclared temporary string space of 124
characters called PAD., PAD is convenient for reading keyboard
input without having to define a string first.

Actually, PAD is two things: a 124-byte free area of memory used
for storing string data, and a word in the GraFORTH word library
named PAD which places the address of this free area of memory on
the stack. Note that the usual string indexing is not used with
PAD:

Ready PAD
[812]

(812 is the address of the PAD string buffer.)

[812]
Ready READLN
Goin' back to my pad.

Ready PAD WRITELN
Goin' back to my pad.

To access the middle of the PAD buffer, simply add an offset to
the address:

Ready PAD
[812]

Ready 6 +
[818]

Ready WRITELN
back to my pad.

Note: PAD is considered a temporary string space because the
same space is used by the GraFERIH system when compiling words
onto the word library, overwritimg the previous contents of PAD.
Predeclared strings should be used for more permanent string
storage.

DELVING DEEPER 5-15

Accessing Individual Characters in Strings

Since each character in a string occupies one memory location,
individual characters in strings can be accessed using PEEK and
POKE. In this example, a line of text is placed in TESTSTRING,
then the ASCII value of the first character is read onto the
stack:

Ready O TESTSTRING ASSIGN " String pickings "

Ready 0 TESTSTRING PEEK
[211]

211 is the ASCII value for the letter "S". "0 TESTSTRING" placed
the address of the first character of the string on the stack,
then PEEK read the value from this address. In the next example,
the "i" in "string" is overwritten with the letter "o0" by storing
its ASCII value:

Ready 239 3 TESTSTRING POKE

Ready 0 TESTSTRING WRITELN
Strong pickings

DELVING DEEPER 5 -16

String Words on Disk

There is a file on the GraFORTH system diskette called "STRING
WORDS". This file contains additional words for manipulating
strings in more complicated ways. To make the string words
active, simply compile the file into memory by typing:

Ready READ " STRING WORDS "
Here are the words in the file "STRING WORDS":

END? is called by a few of the other words to determine 1f the
end of a string has been reached. It removes an address from the
stack, reads the value from that address, and returns a 1 1f the
value is 0 or 141 (the ASCII value for a carriage return), or
returns 0 otherwise.

LENGTH removes a string address from the stack and returns the
Tength (number of characters) of that string:

Ready PAD ASSIGN " How long am I? "

Ready PAD LENGTH
(14]

Remember that string indexing starts at 0 and ends at the string
length-1, so the last character of the above string is character
number 13.

LEFT$ is similar to the Applesoft "LEFT$" function. The form
for LEFTS is:

<¢source> <destination> <# of characters> LEFT$

LEFT$ copies the given number of characters from the source
string to the destination string. In the following example, the
string TESTSTRING is read, then the first 5 characters of
TESTSTRING are assigned to PAD:

Ready O TESTSTRING READLN
ELIZABETH

Ready O TESTSTRING PAD 5 LEFT$

Ready PAD WRITELN
ELIZA

DELVING DEEPER 5 - 17

RIGHT$ is similar to Applesoft's "RIGHT$". The form is the same
as for LEFT$, however the given number of characters are copied
from the right end of the string. Continuing from the previous
example, 4 characters from the right end of TESTSTRING are now
assigned to PAD, overwriting its previous contents:

Ready 0 TESTSTRING PAD 4 RIGHT$

Ready PAD WRITELN
BETH

Notice that with GraFORTH's string indexing, the Applesoft
function "MID$" can be duplicated with LEFT$. This example reads
3 characters from TESTSTRING starting with the character number 1
(not 0):

Ready 1 TESTSTRING PAD 3 LEFTS

Ready PAD WRITELN
LIz

MOVELN simply copies a string from one location to another. The
form is:

¢source> <destination> MOVELN
The following example copies the contents of TESTSTRING to PAD:
Ready O TESTSTRING PAD MOVELN

Ready PAD WRITELN
ELIZABETH

CONCAT concatenates two strings together. The form for CONCAT
is:

¢stringl> <string2> CONCAT

CONCAT copies the contents of string2 to the end of stringl. The
contents of string2 are unchanged. In this example, strings are
read into both PAD and TESTSTRING, then CONCAT is used to combine
the strings in PAD:

DELVING DEEPER 5 - 18

Ready PAD READLN
GraFORTH:

Ready 0 TESTSTRING READLN
The Apple Graphics Language

Ready PAD O TESTSTRING CONCAT

Ready PAD WRITELN
GraFORTH: The Apple Graphics Language

COMPARE makes an alphabetical comparison between two strings,
returning a value on the stack. The form for COMPARE is:

¢stringl> <string2> COMPARE

If stringl is greater than string2 (in alphabetical order,
stringl comes after string2), COMPARE returns a 1. If stringl is
less than string2, COMPARE returns a -1. If the two strings are
equal, COMPARE returns a N. Here is an example:

Ready PAD ASSIGN " LIST "

Ready O TESTSTRING ASSIGN " LOST "

Ready PAD 0 TESTSTRING COMPARE
[-1]

The word COMPARE returned a -1 on the stack because the contents
of PAD is "less than" the contents of TESTSTRING.

Words Manipulating Individual
Characters

GraFNRTH also contains words that print individual characters to
the screen, and get individual characters from the keyboard.
These words interpret numbers as the ASCII values for characters.
(A table of ASCII characters can be found in Appendix D.)

The GraFORTH word "PUTC" (PUT Character) prints a single
character to the screen. PUTC removes a number from the stack,
interprets it as the ASCII number for a character, and prints the
character at the current cursor position:

DELVING DEEPER 5-19

Ready 193 (193 is the ASCII value for the letter "A".)

(193]
Ready PUTC
A

PUTC removed the 193 from the stack and printed the character
IIAI'.

The GraFORTH word GETC (GET Character) places a flashing cursor
on the screen, waits for a character from the keyboard to be
entered, then places its ASCII value on the stack:

Ready GETC

(Type the character "B".)

[194]

(GETC returns 194, the ASCII value for the character “"B".)

To print a character read in with GETC, simply DUPlicate the
value read, and write it to the screen with PUTC:

Ready GETC DUP PUTC

(Type the character "Y".)

Y
[217]
(217 is the ASCII value for the character "Y".)

To check if a key has been pressed without stopping to wait,
"GETKEY" and "CLRKEY" are used. GETKEY and CLRKEY directly use
the Apple's special keyboard memory location.

When a key is pressed, its Apple ASCII value is stored in the
Apple keyboard location. If a key has been pressed, the number
in this location is always 128 or greater. GETKEY reads this
location and places its value on the stack. Executing CLRKEY
forces the value in the keyboard location to less than 128. The
next keypress after CLRKEY is executed will again bring the value
to 128 or qreater.

DELVING DEEPER 5 - 20

Thus, to read the keyboard using GETKEY and CLRKEY, first execute
CLRKEY to make the keyboard location less than 128, then use
GETKEY until the returned value is 128 or greater. This number
will be the ASCII value for the key that is pressed. GETKEY can
be interspersed with other tasks so that other things can occur
while simultaneously reading the keyboard. Here is a simple
example that uses GETKEY and CLRKEY to "grab a character":

: GRAB.CHAR
CLRKEY
BEGIN
GETKEY DUP
128 <
WHILE
DROP
REPEAT
CLRKEY ;

DELVING DEEPER 5 - 21

Using Numbers in Other Bases

GraFORTH can accept and display number in bases other than base
ten. Four words (HEX, BINARY, DECIMAL,and BASE) allow you to
select what base GraFORTH uses.

The word "HEX" causes GraFORTH to read and print numbers in
hexadecimal, base 16. In this example, a number is placed on the
stack, then base 16 is selected using HEX.

Ready 45
[45]

Ready HEX
(2n]

Similarly, the word "BINARY" selects base two:

Ready BINARY
[101101]

The GraFORTH word DECIMAL gets us back to familiar territory:
Ready DECIMAL ..
45

The word "BASE" can be used to select any base. BASE acts as a
variable: the word "->" is used to assign the base. The
following selects base 8 (octal):

Ready 8 -> BASE

Note that since BASE is a variable, its current value can be read
and displayed. However, any base value displayed in its own base
is "10". For example, a 2 in base 2 is 10, and a 16 in
hexadecimal is also 10. Thus, to print the base, you must place
its value on the stack, change BASE to some other base, then
print the stack value. In this short example, the base selected
above is displayed before and after changing back to decimal:

Ready BASE
[10]

DELVING DEEPER 5 - 22

Ready DECIMAL
(8]

Because hexadecimal and some other base numbers use letters of
the alphabet as digits, possible conflicts between numbers and
word names may occur. For example, in hexadecimal, is "ACE" a
GraFORTH word name or a number? To help prevent this, GraFORTH
allows dollar signs ("$") to precede numbers:

Ready HEX

Ready $ACE
[ACE]

Note: A1l of the examples in this manual have assumed that base
ten is selected. In addition, some of the programs on the
GraFORTH system disk have number formatting that requires base
ten. You are free to use other bases, but the results may be
quite unpredictable!

Using DOS From GraFORTH

DOS Command's

Using the Apple Disk Operating System from GraFORTH is much the
same as from Basic. DOS commands can be called directly from
GraFORTH, either from the keyboard or in a word definition. DOS
responds to a command that has been preceded by a carriage return
and a ConTRoL-D (ASCII number 132). (See the Apple DOS manual
for more information on disk access in general.) The form for a
DOS command from GraFORTH is: :

CR 132 PUTC PRINT " <DOS command> " CR

"CR" prints a carriage return and "132 PUTC" prints a ConTRolL-D.
The DOS command is printed next, and the line is ended with
another carriage return. Here is an example that prints a
catalog:

Ready CR 132 PUTC PRINT " CATALOG " CR

DELVING DEEPER 5-23

Using Data Files

Text file access is also similar to Basic. The file is opened
using standard DOS commands, and data can be read from or written
to the file using READLN or WRITELN. File access can be
simplified by defining file words ahead of time. For example, to
begin reading from a text file, you can use a word like
OPEN.READ. (The filename has been stored in PAD.):

: OPEN.READ
CR 132 PUTC PRINT " OPEN " PAD WRITELN CR
CR 132 PUTC PRINT " READ " PAD WRITELN CR ;

After executing this word, the file will be opened for reading,
and data can be read in using READLN. At the end of the text,
the file can be closed by simply using the GraFORTH word "CLOSE".
CLOSE closes any open file.

Since GraFORTH does not have a function similar to Applesoft's
"ON ERROR GOTO", DOS errors, including End Of Data, will produce
an error message and stop the program. This means that either
the length of the file must be known ahead of time, or there must
be a special marker at the end of the file so that no more data
will be read by the program. The last character in the file must
also be a carriage return.

Here is a sample file that makes use of a special End Of File
marker. The marker used here is an asterisk on the last line:

This is my test file.

Each of these lines will be printed

by the program below.

The last 1ine must be a special marker
to end the file. Here it is:

%*

Let us say that we have saved this file with the name "TEST".
Here is a program that will read and print each 1ine in the file,
and will stop when it encounters the end marker "*":

DELVING DEEPER 5. 24

: READER

PAD ASSIGN " TEST " (Place filename in PAD and call)
OPEN.READ (OPEN.READ from above to open file,)
BEGIN

PAD READLN (Read a line from file.)

PAD PEEK (Get first character from line.)

170 &
WHILE (WHILE this character is not "*":)

PAD WRITELN (Write the line to the screen, and)
REPEAT (REPEAT back for the next line.)
CLOSE ; (Close the file.)

As the special GraFORTH DOS allots only one file buffer, only one
file can be open at a time.

Peripheral Card /O

The DOS commands "PR#n" and "IN#n" (where n is a number from 1 to
7) can be used from GraFORTH to route data to and from peripheral
cards in the back of the Apple. In this way, program text or
data can be sent to a printer or other peripheral. After using
“PR#n" or "IN#n", either the GraFORTH word GR or TEXT can be
typed to re-establish the standard GraFORTH I/0. Do not attempt
to use "PR#0" as it will not reconnect GraFORTH's I/0 correctly.

The following word will print the text in the editor buffer to a
printer in slot 1. It reads the characters one at a time and
prints them out until it finds a zero byte, marking the end of
the editor file.

: PRINT.BUFFER
CR 132 PUTC PRINT " PR#1 " CR
34817
BEGIN
DUP PEEK DUP
0O
WHILE
PUTC
1+
REPEAT
GR ;

DELVING DEEPER 5-25

Program Control Words

RUN

The GraFORTH word RUN automatically executes the top word on the
dictionary. This can be a great convenience when loading and
running programs from disk. By using RUN, you don't have to
check what the top word on the dictionary is after compiling a
file in order to run it. In addition, if the top word has a name
something like:

SUPER .ZAPPO.ELECTRO.BLASTERS . APPLE.VIDEO.GAME,

using -RUN can save a bit of typing, to0....

AUTORUN

The word AUTORUN goes a step beyond this. AUTORUN removes a
number from the stack. If this number is nonzero, then GraFORTH
will automatically execute the top word on the dictionary every
time program control is returned to the GraFORTH system level
(i.e. whenever you expect to see a "Ready" prompt). D0DOS errors,
GraFORTH or machine language errors, executing the word ABORT, or
pressing the Reset key with the AUTORUN option on will all cause
the top dictionary word to be executed. Here is an example to
give you a feel for the way AUTORUN works:

Ready : TEST PRINT " AUTORUN IS ON!!! " ;

We've added this word to the top of the dictionary so that
AUTORUM will have a very visible effect.

Ready 1 AUTORUN
AUTORUN IS ON!!!

Ready 3 5
AUTORUN IS ON!!!
[3]

(5]

Ready SWAP
AUTORUN IS ON!!!
5]

(3]

DELVING DEEPER 5-26

Ready ABORT
(The screen clears.)

GraFORTH][(C) 1981 P. Lutus
AUTORUN IS ON!1!
Ready

Fortunately, the AUTORUN option can be turned off by typing:
Ready 0 AUTORUN

Ready

If the top dictionary word runs a "closed" program which never
exits to the system level, the AUTORUN option effectively makes

the GraFORTH language itself inaccessible. Any errors or ABORTSs
simply restart the program.

Saving the GraFORTH System

The GraFORTH language is stored on the system disk as an
executable binary file with the name "OBJ.FORTH". As mentioned
in Chapter 3, when the disk is booted, this file is automatically
loaded and run.

The GraFORTH word SAVEPRG is used to create GraFORTH binary files
similar to OBJ.FORTH. SAVEPRG saves the current GraFORTH system,
including any new words added to the dictionary, as a binary
file. Once created, this file can be BRUN at any .time, bringing
the modified GraFORTH system back into memory.

SAVEPRG is a powerful tool. You can save "customized" systems,
with your favorite special-purpose words already in the
dictionary when the system is booted. You can also save finished
applications programs, in such a way that the program
automatically starts up when booted. This is ideal for games
applications, where the obvious presence of a "language" is
neither needed nor desirable.

To use SAVEPRG, first compile the words to produce the "finished"
system you want to save, then type SAVEPRG:

DELVING DEEPER 5 - 27

Ready SAVEPRG
SAVE FILE NAME :

This prompt asks for the filename you want the new system

saved as. The GraFORTH system disk automatically BR!Ns the file
"0BJ.FORTH", so if you want this new system to boot
automatically, you should name your file "0BJ.FORTH" too. Your
file will then overwrite the suppTied GraFORTH system. (Make
sure you're using a copy of the disk and not ‘the original!) You
are then prompted:

AUTORUN (Y/N) :

This prompt asks whether or not you want the saved system to boot
up with the AUTORUN option on. If you answer Yes to this
question, then the new system will automatically run the top word
on the dictionary, starting a program in motion. If desired,
your program can later turn the AUTORUN option back off,
returning access of the GraFORTH langquage to the user. If you
answer the AUTORUN question with No, the new system will display
the "Ready" prompt on boot-up, with immediate access to the
language.

After answering this question, this disk whirs for a bit, saving
the new system to disk.

Note: As discussed in Chapter 2, a slightly modified version of
DOS is used with GraFORTH. Any system saved with SAVEPRG
requires this version of DOS to be in memory. New systems should
be saved to a copy of the GraFORTH disk, so that the special DOS
will be present.

The GraFORTH system as supplied includes an additional word on
the top of the dictionary which asks the demonstration prompt on
boot-up. This word can be found in the disk file "QUERY". The
system was saved with the AUTORUN option on, so that the demo
prompt would come up automatically. When you answer No to the
demo question, the word turns AUTORUN off (freeing the system),
then FORGETs itself! This leaves the system in its "usual"
state.

The GraFORTH system can be saved to disk without the demo prompt
simply by using SAVEPRG with no additional words on the word
library. (This should only be done to a copy of your disk, in
case lightning decides to strike while the system is being
written to disk.) Boot the disk, answer No to the demo question,
then type:

DELVING DEEPER 5 - 28

Ready SAVEPRG
SAVE FILE NAME :0BJ.FORTH
AUTORUN (Y/N) :N

After the disk stops whirring, turn your Apple off, then on
again. When the system boots, the demo prompt will be gone.

You can also put the demo prompt back into the system. Type:
Ready READ " QUERY "

This adds the word that asks the demo question to the top of the
dictionary. Now type:

Ready SAVEPRG
SAVE FILE NAME :0BJ.FORTH
AUTORUN (Y/N) :Y

The system will be saved with the demo prompt back in.

Overlays

GraFORTH programs can automatically load and run other GraFORTH
programs, and even delete themselves to free up memory. Program
segments that overwrite each other in this way are often called
"overlays". The GraFORTH demonstration programs use overlays
extensively.

To execute an overlay, include a word in the first file that
reads the overlay file. Make the first line in the overlay
FORGET the words already in memory, and the last line in the
overlay the words "CLOSE RUN". To be more specific:

When you need an overlay, execute a READ <filename>, where
<filename)> is the name of the overlay. This file will now be
read into memory, but since the first line of the overlay
contains a FORGET <wordname>, where wordname is the name of the
GraFORTH word you wish to forget back to (inclusive), the
original file (or portion thereof) will be removed. As reading
of the overlay continues, it will now fill memory previously
occupied by the original file. The "CLOSE RUN" at the end of the
overlay file closes the DOS file, then begins executing the new
top word in the word library.

DELVING DEEPER 5-29

We urge you to examine the demonstration file listings as an
example of overlays. Since the FORGET at the beginning of each
file does not cause an error if the word being forgotten does not
exist, the demo files (or any overlay) can also be directly loaded
and run.

Moving Memory

MOVMEM simply moves a block of memory from one location to

another. MOVMEM removes three numbers from the stack. The form
for MOVMEM is:

¢source> <destination> <# of bytes> MOVMEM

The <source> number is the starting address of the data to be
moved. The <destination> is the address of where the block is to
be moved to. <# of bytes)> specifies how many bytes are to be
moved. For example, to move 256 bytes from address 2048 to
address 2816, enter:

Ready 2048 2816 256 MOVMEM

MOVMEM can be handy for relocating character sets and 3-D images
in memory, as will be discussed in Chapters 7 and 8.

Retrieving Word Addresses

The word ' (an apostrophe, also called a "tic") places on the
stack the address of the word that follows it, and prevents that
word from being executed. Here is an example:

Ready ' ERASE
[30749]

The tic placed the address of the word ERASE on the stack, and
prevented ERASE from being executed. Note that the tic is a word
that looks forward down the input line, and retrieves the address
when it is compiled, not every time it is executed.

The address returned by "tic" is always greater than the
hexadecimal address shown with $LIST. This is because the $LIST
address indicates the beginning of the word definition, and "tic"
returns the address of the executing portion of the word. See
Appendix B for more information on the word 1ibrary structure.

DELVING DEEPER 5-30

Calling Machine Language Routines

Machine language programs in memory can be called directly from
GraFORTH with the word CALL. CALL removes a number from the
stack, interprets it as a memory address, then calls the machine
language routine at that address. (The routine should end with
an RTS (ReTurn from Subroutine) instruction to return to GraFORTH
properly.) Machine language programs can be loaded from disk
using the DOS command "BLOAD" into any free area of memory, then
CALLed from GraFORTH.

Before a machine language CALL is made, values can be placed in
the Apple processor's A, X, Y and P registers using the GraFORTH
variables AREG, XREG, YREG and PREG. Before making the machine
language CALL, simply place the desired values into AREG, XREG,
YREG and PREG as you would any other variable. When CALL is
executed, it loads the processor registers with the values from
these variables before doing the call. (Note the importance of
loading a proper value into PREG. If improper processor bits are
set, GraFORTH will not operate!) After the routine has executed,
the values of the registers are loaded back into the variables
and can be read from GraFORTH, again, just as any other variable.

Here is a nice example, which uses CALL to read the game paddles.
The Apple System monitor contains a routine at location -1250 for
reading the game paddles. It expects to see the number of the
game paddle (0 to 3) in the processor's X register. It returns a
number from 0 to 255 (based on the position of the paddle) in the
Y register. The following word reads the value of a game paddle
by placing the top stack value in XREG, calling the paddle
routine, then placing the value of YREG on the stack:

: READ,PADDLE
-> XREG
-1250 CALL
YREG ;

(The Apple manuals warn that two consecutive readings of a game
paddle can produce incorrect results, and suggest a short wait
loop between readings.)

DELVING DEEPER 5-31

Compiling Number Tables

The word "," (comma) causes a number to be compiled as a byte
directly into GraFORTH. Small assembly language routines can be
compiled using commas, or number tables can be generated. Here
is an example of a word that contains a number table of the
visible high resolution colors. The numbers are stored as
individual bytes following the word name in memory:

: COLOR.TABLE1 , 2,3 ,5, 6, ;

These numbers correspond to the colors green, violet, white,
orange, and blue. (Colors in GraFORTH will be discussed in
detail in the next chapter.) Each number can be accessed by
using the tic to retrieve the address of COLOR.TABLE, then adding
an offset (0 to 4) to pick out the appropriate number with PEEK.
Note that COLOR.TABLE is not an executable word!

The comma is the only GraFORTH word that assembles directly at
the byte level, and some precautions are required to use it
effectively. The comma should only be used within word
definitions. Also, for internal reasons, the first byte of an
assembly of code or data may not be greater than 127 (hexadecimal
$7F), nor can it be equal to 10 ($A). Here are the reasons: 10
is a special reserved compiler flag, and a number less than 128
must follow each GraFORTH word name to mark its end. (For more
information, see Appendix B for technical information on
GraFORTH's dictionary link structure.)

Leaving GraFORTH (gently)

The GraFORTH word "BYE" can be used to enter the Apple][system
monitor. The GraFORTH language begins at hex location $6000. To
restart GraFORTH from the monitor, type "6000G".

Conclusion

That about wraps up the language features of GraFORTH. From here
on out we'll be talking about the many types of graphics
available with GraFORTH. (That is what you bought it for, isn't
it?) The next chapter will cover basic point and line drawing in
GraFORTH, as well as a discussion of the supplied TURTLEGRAPHICS.
We'll get into the various modes, color selections and...

Well, that's the topic of chapter 6!

DELVING DEEPER 5 - 32

CHAPTER SIX: TWO-DIMENSIONAL GRAPHICS

Chapter Table of Contents: Page
Purpose and Overview 6-2
Apple Graphics 6-3
GraFORTH Graphics 6-4
Two-Dimensional Graphics Words 6-4
PLOT, LINE and FILL 6-4
COLOR 6-6
UNPLOT, UNLINE and EMPTY 6-8
INVERSE and NORMAL 6-9
ORMODE and EXMODE 6-10
GPEEK 6-12
Turtlegraphics 6-12
PENUP 6-13
PENDOWN 6-13
MOVE 6-13
TURNTO 6-14
TURN 6-14
MOVETO 6-14
Examples 6-15

TWO-DIMENSIONAL GRAPHICS 6-1

Purpose and Overview

The graphics capabilities of GraFORTH can be divided into three
main groups:

Two-Dimensional Graphics (or "Graphics of the First Kind")
includes commands that plot points, draw lines, and fill
rectangular areas on the screen, using a variety of colors and
options.

Character Graphics (or "Graphics of the Second Kind") includes
using and creating new character sets, displaying text with
different sizes and colors, and defining completely new shapes
and pictures in terms of character sets and displaying these
shapes using a special block printing function.

Three-Dimensional Graphics (or "Graphics of the Third Kind")
includes creating and displaying three-dimensional color images
at high speed for animated effects.

This chapter will discuss two-dimensional graphics. We'll start
by talking about what the Apple itself is capable of, and how
GraFORTH uses these capabilities. We'll show you how to plot -
points and draw lines, and then undraw them again, effectively
removing them from the screen. We'll discuss color and the
drawing modes (ORMODE and EXMODE) and how they affect the
drawing process. We'll also talk about using Turtlegraphics,
which is especially useful for creating certain kinds of
graphics displays.

TWO DIMENSIONAL GRAPHICS 6 - 2

Apple Graphics

The Apple screen display, whether it be text or graphics, is
made out of the same units, called pixels. A pixel (abbreviated
form of 'picture cell') is the smallest unit, or dot, which may
be turned on or off of the surface or the screen. There are
53,760 of these smallest units which make up the entire screen,
arranged in a matrix 280 dots wide and 192 dots high.

The standard Apple text display divides the screen into 24
horizontal lines, each 8 dots high. Seven of these 8 vertical
dots are used to form the characters, while the eighth is used
to separate the lines from one another. Horizontally, the
screen is divided into 40 columns, each 7 dots wide. Five of
these 7 horizontal dots are used to form the character, while
one on each side of the character is used for spacing between
the characters. The ASCII values for the characters on the text
screen are stored in a 1024 byte memory area. The hardware
inside the Apple continuously reads the values from this area
and places the appropriate characters on the screen.

The Apple graphics display allows you to turn on or off all
53,760 dots on the screen individually. There are two 'graphics
pages' in memory reserved for this function, but because of the
higher resolution, each requires 8192 bytes to be set aside. It
is possible to alternate between the pages very rapidly for
animation effects (GraFORTH does this automatically for 3-D
displays), but the Apple display hardware cannot merge or blend
the information on the two pages. These two high resolution
pages are often called ‘picture buffers'. Each dot on the
screen represents one bit from the picture buffer. Seven of the
8 bits in each byte are displayed on the screen, with the last
bit used in determining the colors of the other dots in that
byte.

TWO DIMENSIONAL GRAPHICS 6 -3

GraFORTH Graphics

While it is possible to use the Apple text display from GraFORTH
(with the word TEXT), the usual display is the graphics display.
To specify points on the graphics screen, GraFORTH uses
'Cartesian coordinates'. This is a straightforward way to
select a point by naming the column and the row the point is in.
The horizontal position is the X coordinate and the vertical
position is the Y coordinate.

The range of screen coordinates for GraFORTH graphics is:
X from 0 (screen left) to 255 (screen right)
Y from O (screen top) to 191 (screen bottom)

Thus, the upper-left corner of the screen can be represented
with X=0 and Y=0, or simply the X-Y pair (0,0).

Note: The GraFORTH graphics screen is 9 percent narrower than
the maximum possible (256 points wide rather than 280) for the
sake of operating speed. This is one factor that contributes to
GraFORTH's fast line drawing.

The standard Apple text display still uses all 280 dots across
the screen for 40 characters per line. The characters
themselves, instead of being placed on a text screen by the
Apple hardware, are "drawn" from the text page onto the graphics
picture buffer. The full character space, 7 dots by 8 dots, can
be used, and is used for lower case characters and special
character styles.

Two-Dimensional Graphics Words

PLOT, LINE and FILL

For these examples, we don't want text scrolling all over our
beautiful graphics, so let's establish a text window in the
bottom part of the screen. These examples will keep the
graphics above the text window and away from harm. To establish
the window, type:

Ready 0 40 18 24 WINDOW

TWO DIMENSIONAL GRAPHICS 6 - 4

This sets a 40-column wide window from line 18 to the bottom of
the screen. Now type:

Ready ERASE
This clears the text that was still above the text window.

Let's begin at the beginning, with plotting points. The
GraFORTH word PLOT removes two numbers from the stack,
interprets them as X and Y coordinates, and plots a point at
those coordinates on the screen. The form for PLOT is:

<{X-coordinate> <Y-coordinate> PLOT

This example will plot a point in the upper left corner of the
screen:

Ready 0 0 PLOT

Here is another point, in the upper right portion of the screen:
Ready 200 25 PLOT

The word LINE, 1ike PLOT, removes two numbers from the stack and
interprets them as X and Y coordinates. LINE then draws a
straight line from the last plotted point to the given
coordinates. To draw a line, we use the last point we plotted
as one of the endpoints. We simply give LINE the coordinates of
the other endpoint?

Ready 50 100 LINE

This draws a diagonal line from the point (200,25) to (50,100).
We can draw another line, by using PLOT and LINE together again:

Ready 100 10 PLOT 100 140 LINE

This draws a vertical line through the other line and almost
into our text window.

Rectangular areas can be filled in quickly with the word FILL.
FILL also removes X and Y coordinates from the stack. It treats
the last plotted point as one corner of the area, and the given
coordinates as the opposite corner. This example fills in a
rectangular area on the right side of the screen:

TWO DIMENSIONAL GRAPHICS 6 -5

Ready 120 125 PLOT
Ready 200 75 FILL

For both LINE and FILL, the "last plotted point" is always the
point last used by a plotting word, whether it was PLOT, LINE,
or FILL. Another word, POSN, removes X and Y coordinates from
the stack to act as a "last plotted point" without doing any
plotting. POSN can be used to determine the first endpoint of a
line or one corner of an area. This example uses POSN to set the
first endpoint of a line:

Ready 225 50 POSN
Ready 250 125 LINE

COLOR

0f course, GraFORTH can draw in colors, too! The color is set
with the word COLOR. COLOR removes a number from the stack and
uses it to select a color. The eight color numbers (0 through
7) are the same as those used by Applesoft Basic. Here is a
listing of the graphics colors:

Color Number Color

not used
Green (1
Violet (1
White (1
not used

Orange (
Blue (
White (

(depends on monitor)
(depends on monitor)

NOoONnLsEWwNh—O

)
)
)
2)
2)
2)

The orange and blue colors may appear different shades on
different color monitors. The colors can be divided into two
groups. The numbers in parentheses represent the "group number"
(either 1 or 2). Because of some Apple][hardware constraints,
it may be desirable to use colors from the same group when
drawing lines or areas close together. We'll show you an
example of this in a bit. (The Apple][Reference Manual
contains more information on the internal details of these
coRstraints.)

If you don't mind a bit of typing, this example will display 6
diagonal lines in each of the visible colors:

TWO DIMENSIONAL GRAPHICS 6 -6

Ready ERASE

Ready 1 COLOR O O PLOT 100 1n0 LINE

Ready 2 COLOR 20 O PLOT 120 100 LINE

Ready 3 COLOR 40 0 PLOT 140 100 LINE

Ready 5 COLOR 60 O PLOT 160 100 LINE

Ready 6 COLOR 80 O PLOT 180 100 LINE

Ready 7 COLOR 100 0 PLOT 200 100 LINE

With your color monitor properly adjusted, the colors of these
lines (from left to right) should be green, violet, white,
orange, blue, and another brand of white. Note that the colored
lines are not broken at all, as they are with some graphics
displays (1ike Applesoft). GraFORTH draws all colored lines
without breaks.

Lines and points can bhe drawn over FILLed areas, but the colors
will be affected:

Ready ERASE
Ready 5 COLOR
Ready 0 O PLOT 100 100 FILL

This draws an orange rectangle in the upper left portion of the
screen. Now let's draw a line of a different color through it:

Ready 6 COLOR

Ready 0 O PLOT 100 100 LINE

Note that 6 COLOR specifies blue, but because of the orange
background, the line appears white. Now let's try the same
example again, this time using colors from different color
groups:

Ready ERASE 5 COLOR

Ready 0 0 PLOT 100 100 FILL

Ready 1 COLOR

Ready 0 O PLOT 100 100 LINE

TWO DIMENSIONAL GRAPHICS 6 -7

Whoops! You should see a series of small green rectangles along
the diagonal. This is the result of the Apple][hardware
limitations. The solution to avoiding this trouble is to simply
use colors of the same group when lines or areas are
superimposed or placed close together.

UNPLOT, UNLINE, and EMPTY

So far we've been using the word ERASE to clear the graphics
from the screen. In GraFORTH, points, lines, and areas can be
selectively erased. Let's ERASE the entire screen now and set
the color back to white, then plot a few points:

Ready ERASE 3 COLOR

Ready 50 25 PLOT

Ready 100 25 PLOT

Ready 150 25 PLOT

Points can be individually removed with the word UNPLOT. UNPLOT
has the same form as PLOT, however it erases the point at the
given coordinates. (If there {s no point there to begin with,
nothing happens.) Let's use UNPLOT to erase two of the points
we have on the screen:

Ready 50 25 UNPLOT

Ready 100 25 UNPLOT

Similarly, lines can be erased with the word UNLINE. This
example draws two lines, then erases one of them:

Ready 0 0 PLOT 100 100 LINE
Ready 50 O PLOT 150 100 LINE
Ready 0 O UNPLOT 100 100 UNLINE

Rectangular areas created with FILL can be erased with the word
EMPTY. Here we'll FILL two areas, and erase one:

TWO DIMENSIONAL GRAPHICS 6 - 8

Ready 25 75 PLOT 100 125 FILL
Ready 175 25 PLOT 225 100 FILL
Ready 25 75 UNPLOT 100 125 EMPTY

Points, lines, and areas must be UNdrawn using the same color
they were drawn in. For example, all of the above objects were
drawn with 3 COLOR set. The same color was still in effect when
some of the objects were erased. Let's change the color and try
erasing the remaining line and area:

Ready 1 COLOR
Ready 50 0 UNPLOT 150 100 UNLINE

Since 1 COLOR is set, the GraFORTH system assumes a green line
is to be erased, and leaves a string of violet dots behind.

Ready 2 COLOR
Ready 175 25 UNPLOT 225 100 EMPTY

With 2 COLOR set, GraFORTH tries to erase a violet colored area,
changing the white to green.

INVERSE and NORMAL

If you prefer to do graphics on a white background, you can do
this with the word INVERSE. INVERSE simply draws the
‘complements' of the selected color: white becomes black, black
becomes white, green becomes violet, blue becomes orange, etc.
To show the effects of INVERSE, let's first erase the screen,
then enter INVERSE:

Ready ERASE

Ready INVERSE

Notice that the "Ready" on the last line is now displayed in
"inverse": black characters on a white background. Since only

the word "Ready" was printed after executing INVERSE, it is the
only thing displayed in inverse. Now type:

TWO DIMENSIONAL GRAPHICS 6 -9

Ready HOME

Since HOME clears the text window, now everything inside the
text window is in inverse. Now type:

Ready ERASE

ERASE has "erased" the entire screen to white. Let's draw the
six colored lines again:

Ready 1 COLOR 0 O PLOT 100 100 LINE

Ready 2 COLOR 20 0 PLOT 120 100 LINE
Ready 3 COLOR 40 0 PLOT 140 100 LINE
Ready 5 COLOR 60 0O PLOT 160 100 LINE
Ready 6 COLOR 80 O PLOT 180 100 LINE
Ready 7 COLOR 100 O PLOT 200 100 LINE

Note that the colors of the lines have all changed. From left
to right, the colors are now violet, green, black, blue, orange,
and another black.

We'll eventually want to return to a normal black-background
display. The word NORMAL causes GraFORTH to use the normal
colors again, including good ol1' black:

Ready NORMAL
Ready ERASE

ORMODE and EXMODE

GraFORTH has two different "drawing modes", called "ORMODE" and
"EXMODE". Amazingly enough, these modes are set with the
GraFORTH words ORMODE and EXMODE. The 'default' mode (the mode
GraFORTH uses when a mode is not specified) is ORMODE. The
philosophy behind ORMODE is that the plotting words put dots of
the specified color on the screen regardless of what is already
on the screen. With EXMODE however, a drawing command will put
points on the screen only where points are not already plotted.
If some points to be plotted are already plotted, those points
will instead be turned off.

TWO DIMENSIONAL GRAPHICS 6 - 10

A couple of examples will be helpful here. Let's first FILL an
area, then draw an overlapping line in ORMODE:

Ready 100 50 POSN 150 100 FILL
Ready 50 50 POSN 200 100 LINE

The 1ine goes straight through the middle of the rectangle.
Watch what happens when we try to erase the line:

Ready 50 50 POSN 200 100 UNLINE

The 1ine was erased, but it neatly chopped the rectangle in
half, too. Using EXMODE, anything that can be done can also be
undone. Let's do the same example again, this time in EXMODE:

Ready ERASE EXMODE
Ready 100 50 POSN 150 100 FILL
Ready 50 50 POSN 200 100 LINE

The line is white, except where it passes over the white
background of the rectangle. Here it is changed to black. Now
to erase the line, we want to make the white sections black, and
the black trace through the rectangle white. And this is
exactly what happens with regular plotting in EXMODE. We can
erase the line by telling GraFORTH to draw it again:

Ready 50 50 PNSN 200 100 LINE

The line is erased, and the rectangle is again intact. The key
to understanding EXMODE is that if something is drawn once, it
appears on the screen. If it is drawn again, it disappears,
leaving the screen as if the object had never been drawn.

EXMODE works equally well with colors. In this example, a green
1ine is drawn through the rectangle, the white rectangle is
erased, then the line 1is erased:

Ready 1 COLOR 50 50 POSN 200 100 LINE

Notice that the line is violet inside the rectangle.

Ready 3 COLOR 100 50 POSN 150 100 FILL

TWO DIMENSIONAL GRAPHICS 6 - 11

The 1ine is now completely green, as if the rectangle never
existed.

Ready 1 COLOR 50 50 POSN 200 100 LINE

EXMODE and ORMODE can be combined with INVERSE and NORMAL along
with the six colors to produce a wide variety of color and
pattern combinations, more than we could hope to fully explore
here. We suggest that you experiment further with these various
combinations, to see how they can work best for your
applications.

GPEEK

Your programs can determine whether or not a given point on the
screen has been plotted with the word GPEEK. GPEEK removes X
and Y coordinates from the stack, looks to those coordinates on
the screen, and places a non zero number stack if the point
there is "on" (not black) or a zero if the point is "off"
(black). The following example draws a 1ine, then checks two
points, one on the line and one off:

Ready 3 COLOR O O PLOT 100 100 LINE
Ready 50 50 GPEEK .
?

Ready 200 10 GPEEK.
0

Turtlegraphics

Turtlegraphics is also available from GraFORTH. Turtlegraphics
is a somewhat different way of specifying how to draw lines in
GraFORTH. Imagine a tiny turtle sitting on the middle of the
screen with a pen tied to his tail. Wherever he moves he draws a
line behind him. We can tell him to turn to the left or the
right, to walk forward a given distance leaving a straight line
behind him, or 1ift the pen so that a line will not be drawn as
he moves. (For the mathematicians among us, this way of drawing
lines could be considered as using "relative polar coordinates".)

TWO DIMENSIONAL GRAPHICS 6 - 12

The Turtlegraphics words in GraFORTH are found on the system disk
in a text file called "TURTLE". We can compile these words into
the word library by typing:

Ready READ " TURTLE "

We can see the words added to the dictionary by typing LIST. A
few of the words in the TURTLE file are not used directly, but
are called by other words.

Let's "initialize" Turtlegraphics by typing:
Ready TURTLE

TURTLE resets graphics mode, erases the screen and sets a text
window along the bottom four lines, then sets 3 COLOR (white) and
positions the turtle in the center of the screen, facing toward
the top, with the turtle's "pen" down.

PENUP

The word PENUP "1ifts" the turtle pen so that the turtle can be
moved without drawing a line on the screen. The pen stays up
until a PENDOWN command is given or the turtle is reset with the
word TURTLE.

PENDOWN

PENDOWN "lowers" the turtle's pen. A line will be drawn whenever
the turtle is moved with the pen down. PENDOWN stays in effect
unless a PENUP command is given.

MOVE

The word MOVE moves the turtle in the direction it is pointing.
If the pen is down, a 1ine will be drawn. If the pen is up, a
line will not be drawn. The form is:

<{distance> MOVE

The distance is measured in pixels, or dots. To move the turtle
50 pixels, type:

Ready 50 MOVE

TWO DIMENSIONAL GRAPHICS 6 - 13

TURNTO

The turtle can be turned to a certain angle with TURNTO. TURNTO
has the form:

<angle> TURNTO

The angle given is in degrees, and increasing angles are in a
clockwise direction. Zero is straight up, 90 is to the right,
180 is facing down, and 270 is to the left. Let's move the
turtle in our example to face to the right (to 90 degrees), then
move it 75 pixels:

Ready 90 TURNTO
Ready 75 MOVE

TURN

The word TURN turns the turtle clockwise from its current
direction a given angle. The form is the same as for TURNTO, but
TURN is a relative turn from the turtle's current direction. The
following example now turns the turtle 45 more degrees clockwise,
then moves the turtle 50 pixels:

Ready 45 TURN
Ready 50 MOVE

MOVETO

Lastly, MOVETO moves the turtle directly to a specified X,Y
position on the screen. If the turtle's pen is down when the
MOVETO command is given, a 1ine will be drawn. If the pen is up,
no 1ine will be drawn, but the turtle's position will be updated.
The form for MOVETO is:

<X coordinate> <Y coordinated> MOVETO

TWO DIMENSIONAL GRAPHICS 6 - 14

We can move the turtle to the upper-left corner of the screen,
turn it to face the lower right, then move it back to the center,
drawing a line, with the following commands:

Ready PENUP

Ready 0 0 MOVETO

Ready 127 TURNTO

Ready PENDOWN

Ready 160 MOVE

Examples

The advantage of Turtlegraphics is that shapes can be drawn in
different sizes and facing different directions with little work.
For example, to draw a square, you can type the following:

Ready TURTLE
Ready 50 MOVE 90 TURN 50 MOVE 90 TURN
Ready 50 MOVE 90 TURN 50 MOVE
A faster way is to repeat the words in a'loop:
Ready TURTLE
Ready 4 0 DO 50 MOVE 90 TURN LOOP
This line can be put into a word definition and used at any time:
: SQUARE

4 0 DO

50 MOVE

90 TURN
LOOP ;

TWO DIMENSIONAL GRAPHICS 6 - 15

Now the square can be drawn starting at any point on the screen
and turned any direction:

Ready TURTLE

Ready PENUP 0 100 MOVETO PENDOWN SQUARE

Ready PENUP 55 100 MOVETO 30 TURNTO PENDOWN SQUARE
Ready PENUP 120 100 MOVETO 60 TURNTO PENDOWN SQUARE
Ready PENUP 190 100 MOVETO 90 TURNTO PENDOWN SQUARE

The following example makes a very nice circular pattern using
SQUARE:

Ready TURTLE
Ready 36 0 DO SQUARE 10 TURN LOOP

TWO DIMENSIONAL GRAPHICS 6 - 16

CHAPTER SEVEN: CHARACTER GRAPHICS

Chapter Table of Contents:
Purpose and Overview

Special Output Characters

Changing Character Size and Color

Font Selection

The CHAREDITOR

Selecting and Displaying the Character Set
Displaying a Block of Characters

Defining Your Own Shapes

Saving a Character Set

Block Printing from GraFORTH
Setting the Block Size (BLKSIZE)
Drawing the Block (PUTBLK)

Exclusive Or Mode (EXMODE)

Summary

Conclusion

CHARACTER GRAPHICS

Page

7-2

7-2

7-12
7-13
714
7-15

7-18

Purpose and Overview

GraFORTH can do weird and wonderful things with the characters
displayed on the screen. Text can be reverse scrolled, down the
screen. Characters can be made much larger, and displayed in
color. Different character styles, or 'fonts' can be selected
and even created in GraFORTH. Entire images can be defined
within a character font and rapidly printed as a block of
"characters" for animated displays.

In this chapter we'll show you how to make use of each of these

features and give you some suggestions for incorporating them
into your own programs.

Special Output Characters

Besides the special input characters (ConTRoL-I, ConTRoL-0, etc.)
discussed in Chapter 4, GraFORTH also uses two special output
characters, ConTRoL-L, and ConTRoL-K. These characters are
usually printed from within a program, instead of entered at the
keyboard. (They can be typed from the keyboard, but GraFORTH
will try to read them as characters in a GraFORTH word.)

ConTRoL-L (Apple ASCII number 140) erases the screen inside the
text window. Printing a ConTRoL-L is equivalent to executing the
word HOME.

ConTRoL-K (Apple ASCII number 139) causes a reverse line feed, so
that subsequent printing will be one line higher. If printing is
already on the top 1ine of the text window (the vertical tab
equals the top window margin), then the display will scroll in
reverse, moving text down the screen.

CHARACTER GRAPHICS 7 -2

Changing Character Size and Color

GraFORTH has the unique ability to print characters in 8
different sizes using the word CHRSIZE. CHRSIZE removes a number
from the stack to select the character size. Valid numbers are
from 0 to 8. Character size 0 specifies the usual GraFORTH
character display. Character sizes 1 through 8 cause the
characters to be "drawn" onto the screen using GraFORTH's color
graphics capabilities. Character size 1 is the same size as
character size 0, and the others are 2 through 8 times larger.

Let's introduce some of these features through examples. First,
we'll set everything back to normal by typing:

Ready ABORT

Now let's erase the normal sized characters from the screen and
select a larger character size:

Ready HOME 2 CHRSIZE

(Erasing the screen with HOME is a normal but not required step
in changing character size. If HOME is not used before changing
size, in some cases not all entered characters will be printed.)

The "Ready" prompt is now twice its normal size! You will notice
that the large character sizes take a longer time to print, and
that if allowed, scrolling is much slower than it is when using
the standard character size. Also, the screen is actually 9%
narrower than the standard size, since the graphics features are
used to print them.

The large characters can also be displayed in color! Type:

Ready HOME 1 COLOR

This will clear the screen, then make the text green. We cleared
the screen again because combining two colors of text on the

screen can have some unusual effects of its own. To see these
effects, type:

CHARACTER GRAPHICS 7-3

Ready 2 COLOR

Now hit the <return> key a few times to cause the text to scroll.
The "Ready" prompt that was green gets overwritten with the
violet, but does not scroll. Only text of the current color and
of the current size will respond to text commands.

Obviously, when the characters are larger, fewer characters can
be displayed on the screen. When you select a new character size
with CHRSIZE, GraFORTH automatically sets the text window size to
the correct limits, to keep the text on the screen. Below is a
table relating character sizes to the number of characters that
can be displayed, and indicating whether or not colored text is
possible for that character size:

Size Columns Rows Color?

0 40 24 No

1 32 24 Yes ﬁwith funny effects)
2 16 12 Yes (with better effects)
3 10 8 Yes

4 8 6 Yes

5 6 4 Yes

6 5 4 Yes

7 4 3 Yes

8 4 3 Yes

You might want to try the following to see GraFORTH's largest
character size in color. First type ABORT to get yourself back
to a predictable place, then type:

Ready HOME 8 CHRSIZE 5 COLOR

A mammoth orange "Ready" prompt will appear, split across two
1ines, with a huge lumbering cursor! Allowing time for the text
to scroll, now enter:

Ready INVERSE

After another scroll, the display changes to inverse. Obviously,
you wouldn't want to enter a long program this way! Large
character sizes work very well for program or game displays, but
weren't really intended to be used for input. The fastest way
out of our current situation (besides hitting <reset)) is to
type:

CHARACTER GRAPHICS 7-4

Ready ABORT

After the text scrolls once more, the ABORT is executed, and
things are back to normal.

Font Selection

The character "style" used in a text display (the actual set of
shapes of the characters displayed) is called a character 'font',
or character set. The Apple][contains an uppercase-only
character set stored in its hardware. GraFORTH uses this when
TEXT mode is selected. However, GraFORTH's usual graphics
display instead uses a character set from memory. This character
set is stored in a binary file on the GraFORTH system diskette,
and is read into memory when GraFORTH is first booted.

The disk actually contains several character sets, and any of
them can be used for text display. The character set files on
disk are:

CHR.SYS
CHR.STOP
CHR . SLANT
CHR.GOTHIC
CHR.BYTE
CHR.STUFF
CHR (MAXWELL

(The last two are special character sets used for ‘character
graphics', and do not work well for-a text display. We'll show
you how to work with these in a bit...)

In memory, a character set occupies 768 bytes. There are 96
printable characters, and each character uses 8 bytes in the
character set. These 8-byte blocks are actually graphics
"pictures" of each character. When GraFORTH is booted, it loads
CHR.SYS into memory starting at location 2048. Whenever it
displays a character, it looks up the "picture" of that character
from this area of memory, and places it on the screen.

Character sets elsewhere in memory can also be used for the
screen display. Let's load another character set from disk into
a free area of memory. The location 2816 is the beginning of a
large free area of memory. We'll use a standard DOS call to load
the file in:

CHARACTER GRAPHICS 7-5

Ready CR 132 PUTC PRINT * BLOAD CHR.BYTE,A2816 " CR

The disk whirs a bit, and the character set is loaded. To use
this character set for the display, the word CHRADR is used.
CHRADR stands for CHaRacter ADdRess, and it is used to select the
memory location of the current character set. The form is:

<¢address of character set> CHRADR

We loaded the character set into memory starting at location
2816, so this is the address we give to CHRADR:

Ready 2816 CHRADR

A1l printing will now use the new character set. The characters
that were already on the screen in the old character set,
however, are unchanged. Characters from different character sets
can be displayed on the screen at the same time. However, if the
screen is scrolled, these characters will be reprinted a line
higher, using the newest character set.

The ASCII numbers for the printing characters range from 160 to
255. To display all of the printing characters in the set at
once using PUTC, type:

Ready 256 160 DO I PUTC LOOP

You may want to load the other character sets into memory to see
what they look like. You can load them into the same area of
memory and overwrite CHR.BYTE, or you can use another free area
of memory and select it with CHRADR. The memory map in Appendix
B shows the free areas of memory. Therefore, it is possible (and
easy!) to have several character sets in memory at once, quickly
changing from one to another. Care should be taken, however, to
avoid overwriting a portion of the GraFORTH system. Remember
that each character set occupies 768 bytes of memory.

Usually, you will want to return to the system (CHR.SYS)
character set. The GraFORTH word CHRSET returns the address of
this character set, 2048. Thus, to switch back to this display,
you can type:

Ready CHRSET CHRADR

(Of course if you want to, you can overwrite this area of memory
with another character set, too.)

CHARACTER GRAPHICS 7-6

The CHAREDITOR

On the GraFORTH system diskette is a file called CHAREDITOR,

This program enables you to read in character sets, examine and
modify character shapes, create large block images that are
stored as a series of characters, and save the new character sets
to disk again.

CHAREDITOR is one of the larger programs, so it would be a good
idea to LIST the dictionary and FORGET any words you may have
added before loading in CHAREDITOR. To load the program in,
type:

Ready READ " CHAREDITOR "
To run CHAREDITOR, type:
Ready HOME RUN

Notice that we cleared the screen before running the program.
CHAREDITOR does not automatically clear the screen. This is so
that any graphics images on the screen can be retained and used
within the CHAREDITOR, allowing you to "pull" images and shapes
from other programs into your GraFORTH character sets.

You will see a list of commands to the right, the prompt

"Enter command:" near the bottom of the screen, and a flashing
dot in the upper-left corner. This flashing dot is the "drawing
cursor" and will be used for creating your own character shapes.

Selecting and Displaying the Character Set

The character editor works with one character set at a time. To
get an understanding of things, let's start by looking at the
system character set that starts at location 2048. The editor
uses single-letter commands. To specify the address of the
desired character set, press "A" for Address. You will then see
the prompt:

CHARACTER GRAPHICS 7-17

Enter Charset
Work Area Address : 2816

The input cursor is flashing over the "2816". This is the
default address, the address used if you do not specify one. You
can keep this address simply by pressing <return>. However, we
want to enter the address of GraFORTH's standard character set.
Type "2048" over the top of the "2816" and press <returnd>. Now
2048 is the address of the character set used by the character
editor.

Type "D" for "Display characters". You'll see a display across
the bottom of the screen of all the characters in the character
set, in inverse. To the left are the numbers 0, 32, and 64.
These are index numbers. When manipulating character shapes in
GraFORTH, character numbers in the range of 0 to 95 are used
instead of the ASCII values (which range from 160 to 255 for
printing characters). The first row of characters are numbered 0
through 31, the second row 32 through 63, and the third row 64
through 95.

Displaying a Block of Characters

If we want, we can take a sequential string of characters and
display them in a rectangular block on the screen. Let's display
the 6 characters "n" through "s" in a block that is 3 characters
wide by 2 characters tall. To select a block of this size, press
"B" for "Blocksize". You will be prompted:

Enter Block Horizontal Size :

Enter a 3 and press <return>. You will see:

Enter Block Vertical Size :

Enter a 2, press <return>, and you will get the regular

"Enter command:" prompt back. Also notice that 4 more dots have
appeared at the top of the screen, outlining our 3 by 2 character
block.

Press "D" to bring the character set display back. Counting
across the bottom row from the index number 64, you will find

that the character "n" is character number 78. To display the
block of 6 characters starting with "n", type "R" for "Read".

CHARACTER GRAPHICS 7-8

You will see:

Enter character number
to be read :

We want character number 78, so type "78". The 6 characters will
appear in the block surrounded by the 4 dots.

You can also display blocks starting on other characters, or use
a different blocksize. When changing blocksize, you may want to
erase the block from the screen. To do this, simply type "E" for
"Erase", then answer "Erase (Y/N) :" with a "Y",

We've been looking at a block of standard characters, to show you
how block printing is done. Now let's see some actual character
graphics. To protect our precious system character set, press
"A" and select an address of 2816 again, back into open memory.
Type "G" for "Get". This option allows you to load a character
set in from disk. You will see:

Enter Load File Name :

Type "CHR.STUFF". This character set will load into memory
starting at the location 2816. Type "D" to display tbis
character set. Except for a few punctuation symbols, those don't
look much like characters! You can see pieces of the Insoft
logo, parts of faces, and an assortment of lines which are
actually pieces of a helicopter used in the GraFORTH
demonstration program.

If you've changed the Blocksize, set it back to 3 characters
horizontally by 2 characters vertically. Now type "R" and read
character number 78. A smiling face will appear in the upper
left. By pressing "D" again, you can see that this face occupies
the same six characters that the characters "n" through "s"
occupied in the system character set. The other three faces
begin at character numbers 84 and 90. Just press "R" and enter
the character number to see them.

The Insoft logo uses a blocksize of 8 by 2 characters, and begins
at character number 16. The three helicopters use a blocksize of
5 by 3 characters and begin at character numbers 33, 48, and 63.
You will probably want to erase the block (with "E") before
changing the blocksize, so that part of the previous image won't
remain on the screen beside the new block.

CHARACTER GRAPHICS 7-9

Defining Your Own Shapes

To create your own shapes with the character editor, first select
a blocksize for the image you want to draw. Erase the block if
necessary. Here's where the drawing cursor comes in. By
pressing the I, J, K, and M keys, you can move this cursor one
pixel up, left, right, or down within the block. If you want to
plot a point at the position of the cursor, press "P" for "Plot".
To draw a 1ine from the last plotted point to the cursor, press
"L". Notice that "P" and "L" are actually PLOT and LINE
commands, with the coordinates specified by the cursor. The
character image is created by moving the cursor and drawing the
points and lines that make up the image.

In addition, you can create character images in color. Press "C"
for "Color" and enter the number of the color you want to work
in. (When colored character images are displayed in GraFORTH,
the colors mav be different, depending on whether the image is
drawn heginning on an odd-numbered column or an even-numbered
column. This comes about as a result of the way the Apple][
generates high-resolution color.)

If you plot a point that you didn't want, you can erase it by
pressing "U",which UNPLOTs the point. Similarly, you can erase
lines by pressing "Z". If the drawing cursor moves too slowly,
you can increase its step size by pressing "X", then entering the
number of pixels you want the .cursor to move whenever you press a
cursor-moving key (I, J, K, M). If your image isn't coming out
the way you'd like....well, press "E" to erase it and try again!

Experiment with these keys to get a feel for creating images.
A1l of the images in CHR.STUFF were created with the character
editor. If you like, you can read an existing image from the
character set and use the drawing keys to modify it.

When you've created an image that you want to save, first
multiply the block vertical size by the horizontal size, to
determine how many characters your image will occupy. Then press
"D" to see the current character set, and choose a range of
characters in the character set to write your image to. Press
"W" for "Write". You will be prompted:

Enter character number
to be written :

CHARACTER GRAPHICS 7-10

Type the character number of the first character in the desired
range. Your image will be written into the character set
starting at that character. Press "D" again and vou will see
your image neatly dissected and placed in the character set.

Images from one character set can be copied to another using the
CHAREDITOR "T" ("Transfer") option. You will be prompted for a
"From" address, a "To" address, and a length. To copy an entire
character set from one address to another, simply enter the
address of the character set to be transferred, the address of
where it is to go, and enter 768 for the length. Remember that
character sets are 768 bytes long.

Transferring only part of a character set is a little trickier.
Remember that each character occupies 8 bytes. Compute the
"From"” and "To" addresses based on the character number and the
addresses of the character sets. The length is the number of
characters times 8.

Saving a Character Set

After a new character set has been created, you can save it to
disk to be used again later. To save a character set, press "S"
for "Save". You will see:

Enter Save File Name :

Type the filename you've selected for the character set. Be sure
that there are no files with that name on disk, unless you want
to overwrite that file. Note that all of the character sets on
the GraFORTH system disk begin with the prefix "CHR.". This is
not a requirement; the prefix simply acts as a reminder that the
file contains a character set.

When you want to leave the character editor, type "Q" for "Quit".
If you want to begin work with another program, it would probably
be best to FORGET the character editor first, since it takes up a
lot of room in the word library. The word "X" is the first word

in the character editor, so to delete the editor, type:

Ready FORGET X

CHARACTER GRAPHICS 7-11

Block Printing from GraFORTH

Printing blocks of characters is done directly from GraFORTH much
the same way as in the character editor. A character set is
loaded into memory, an appropriate blocksize is selected, and a
sequential range of characters is printed in the block at the
current horizontal and vertical position.

Let's display some of the same images we saw earlier in the
character editor. First, load "CHR.STUFF" back into memory:

Ready CR 132 PUTC PRINT " BLOAD CHR.STUFF,A2816 " CR

You could now type "2816 CHRADR" to select the character set, but
remember that this character set doesn't have much in the way of
recognizable characters! It contains helicopter parts and other
things. GraFORTH can recognize the characters fine, but the
screen display is unusable. When we display a character image,
we'll jump into the character set, display the image, then jump
back out.

BLKSIZE

The block size in GraFORTH is set with the word BLKSIZE. The
form for BLKSIZE is:

<horizontal sized> <vertical sized> BLKSIZE

As in the character editor, the horizontal and vertical size are
measured in characters. BLKSIZE remains set until changed. The
word ABORT does not reset BLKSIZE.

To prepare to see the smiling faces, set a blocksize of 3
characters wide by 2 characters tall:

Ready 3 2 BLKSIZE

CHARACTER GRAPHICS 7 - 12

PUTBLK

The word that actually puts the block of characters on the screen
is PUTBLK. PUTBLK removes a number from the stack and uses it as
the starting character number for the block to be displayed.
Character numbers range from 0 to 95, as in the editor. The
number of characters to be printed is determined by BLKSIZE. The
position of the block on the screen is set the same way text is
positioned, with HTAB and VTAB, or the other text positioning
commands.

Let's block-print one of the faces in CHR.STUFF. For this
example, type this entire line at once:

Ready HOME 2816 CHRADR 78 PUTBLK CHRSET CHRADR 12 VTAB

"HOME" clears the screen and positions printing to the upper-left
corner, "2816 CHRADR" sets the character set address for
CHR.STUFF, "78 PUTBLK" actually prints the image, "CHRSET CHRADR"
resets the system character set, and "12 VTAB" gets the following
"Ready" prompt down out of the way, so that it won't overwrite
the block just printed.

A smiling face should have appeared in the upper-left corner of
the screen.

To save on typing a bit, let's define a couple of new words to
help us in and out of the special character set. We'll call
these words "IN" and "OUT":
Ready : IN 2816 CHRADR HOME ;

Ready : OUT CHRSET CHRADR 12 VTAB ;
To display another face, we can simply type:
Ready IN 84 PUTBLK QUT
Unlike text printing, PUTBLK does not update the horizontal
cursor position. Therefore, once a printing position has been
established, several images can be drawn sequentially in the same
space. The following example prints the three helicopter images
in the same space 100 times. Keep your eyes open; it's fast:
Ready 5 3 BLKSIZE

Ready IN 100 0 DO 33 PUTBLK 48 PUTBLK 63 PUTBLK LOOP OUT

CHARACTER GRAPHICS 7-13

After changing the blocksize, the Insoft logo (which starts at
character number 16) can be displayed centered on the screen:

Ready 8 2 BLKSIZE
Ready IN 5 VTAB 16 HTAB 16 PUTBLK OUT

We're being cautious about the display here because we're mixing
the printing of block images using one character set with reading
keyboard input using another. Most finished programs will have
the changes planned out, so that the most effective mixing of
character images and text display can occur.

To erase a character image, the word UNBLK is used. UNBLK simply
erases a block in the current blocksize at the current printing
position. The following example erases the Insoft logo we placed
on the screen:

Ready 5 VTAB 16 HTAB UNBLK

The VTAB and HTAB determine the position of the block to be
erased. Since UNBLK doesn't print any characters, we don't need
to specify a character set.

0f course, character images can also be made larger by using
CHRSIZE. This example displays the Insoft logo four times as
large:

Ready IN 3 CHRSIZE 1 COLOR 16 PUTBLK O CHRSIZE OUT

EXMODE Character Graphics

Character sizes 1 through 8 will be drawn in "EXMODE" if EXMODE
is set. This allows you to draw characters or character images
over other graphics, then erase them, leaving the original
graphics intact. However, EXMODE character graphics requires a
few special considerations.

As GraFORTH displays characters on the graphics screen, it stores
the ASCII values for those characters in the text screen area.

If a character about to be printed is already in place on the
screen, no high-resolution printing is done, since the character
is already present. This saves much time in printing and
scrolling.

CHARACTER GRAPHICS 7 - 14

However, when using EXMODE, you usually want to reprint the same
characters in the same location to cause them to disappear again.
Therefore, to unprint a line using EXMODE, you must first erase
the text screen (this is the actual Apple][text screen, not the
high resolution screen used by GraFORTH) to force a reprinting.
To do this, you use the Apple][monitor's screen erase routine
("-936 CALL"), then print the same line in the same position,

The following word definition is an example of using EXMODE
character graphics. It draws a diagonal line, writes text over
the line, then erases the text, leaving the line intact. It
repeats this 4 times:

: EXMODE.DEMO

ERASE
1 CHRSIZE (Set up EXMODE character graphics)
E XMODE
0 0 PLOT 100 100 LINE (Draw the line to be written over)
4 0 DO (Loop 4 times)
3000 0 DO LOOP (Delay loop, to slow it down)
5 VTAB
5 0 DO (Print the 1ine 5 times)
PRINT " This line can be erased " CR
LOOP
-936 CALL (Erase the text screen)
LOOP

0 CHRSIZE ;

Summary

Output Characters

GraFORTH uses two special output characters: ConTRoL-L erases
the screen inside the text window, and ConTRoL-K causes a reverse
line feed, making the screen reverse scroll if the cursor is at
the top of the text window.

Character Sizes

The GraFORTH word CHRSIZE uses a number from the stack to select
a character size. Valid numbers are O through 8, Sizes 1
through 8 can be drawn in color using the word COLOR. Character
size 0 is the normal text display.

CHARACTER GRAPHICS 7-15

Font Selection
Various character fonts can be used by BLOADing them into free
memory and selecting that memcry with CHRADR. GraFORTH's system

character set begins at location 2048. The word CHRSET returns
this address.

CHAREDITOR

The program CHAREDITOR is used to modify and save character
shapes and images. Here is the normal sequence of events in the
use of CHAREDITOR, with example entries:

1. Load and run the CHAREDITOR program:

Ready READ " CHAREDITOR "

Ready HOME RUN

2. Select a character set work address:

Enter Charset
Work Area Address : 2816

3. (optional) Load a character set:
Enter Load File Name : CHR.STUFF

4. Select a block size (single characters are always 1 by 1;
images may be larger):

Enter Block Horizontal Size : 3
Enter Block Vertical Size : 2

5. Draw the image or character using the described sketching
keys.

6. Write your image or character into the character set:
Enter Character Number to be Written : 90
7. Save the modified character set to disk:

Enter Save File Name : CHR.TEST

CHARACTER GRAPHICS 7 -16

Block Printing from GraFORTH

Displaying character graphics from GraFORTH usually involves the
following steps:

1. Load a character set into memory:

Ready CR 132 PUTC PRINT " BLOAD CHR.STUFF,A2816 " CR

2. Select the character set:

Ready 2816 CHRADR

3. Choose an appropriate blocksize:

Ready 3 2 BLKSIZE

4, (optional) Select a character size and color:

Ready 2 CHRSIZE 1 COLOR

5. Position the cursor and draw the block:

Ready 5 VTAB 2 HTAB 90 PUTBLK

Since PUTBLK does not advance the cursor, several blocks may be
drawn on top of one another without having to reposition the

cursor. The word UNBLK erases a block at the current position of
the given blocksize.

EXMODE Character Graphics

Character sizes 1 through 8 may be drawn using EXMODE., This way,
characters can be displayed over other graphics without erasing
them. However, to erase a line printed in EXMODE, the text
screen must first be erased with "-936 CALL" before the line is
reprinted.

CHARACTER GRAPHICS 7-17

Conclusion

This chapter introduced GraFORTH's character graphics
capabilities. So far we have covered the language features of
GraFORTH, its point and line graphics, and now the set of
graphics that manipulate characters and block images. Next
chapter, we'll introduce the most amazing aspect of GraFORTH, its
three dimensional color graphics capability. So hold on to your
keyboard, here we go!

CHARACTER GRAPHICS 7 -18

CHAPTER EIGHT: 3-D GRAPHICS

Chapter Table of Contents:
Purpose and Overview
3-D Graphics at a Glance
3-D Image Format

Image Parameters

Rotation

Scaling

Three-Dimensional Perspective
Position

Translation

Object Color

The Image Editor

Address and Image Selection
Getting a Good View

Image File Entries

Creating New Images

Saving the Image File

Three-Dimensional Display Method's

Redrawing Without Change
Erasing Individual Objects
Overlapping Objects and UNDRAW
Other Effects

Profile

Setting Parameters

Entering DATA from Keyboard
Entering DATA from Disk
Memory Considerations
Playing Around
Conclusion

3-D GRAPHICS

Page

%
-
Q

00 00 00 00 0O
—I_A_.A_I_l
CIWN = =

t ih g
-3
()]

mmg’m
PN
ONNO

8-22
8-24
8-1

Purpose and Overview

Perhaps the most exciting aspect of GraFORTH is its high-speed
'3-D graphics capabilities. GraFORTH can manipulate up to 16
three-dimensional shapes simultaneously. In this chapter we'll
discuss how to use these features.

We'll begin with an overview of how 3-dimensional shapes are
accessed and manipulated, and give you some introductory
examples. We'll then explain the various 3-D parameters and
discuss the image "format" in detail. We'll show you how to use
the IMAGEDITOR to create your own 3-D images, then discuss 3-D
display methods. Lastly, we'll discuss two very useful programs
for developing and manipulating your 3-D image files.

3-D Graphics at a Glance

To display a 3-D object in GraFORTH, the "image" information
describing the shape of the object is first loaded into a free
area of memory, then commands are entered which tell the GraFORTH
system where the image is in memory, and how the image is to be
displayed.

GraFORTH uses an internal array to store the current information
about all of the 3-D objects being displayed. The array stores
the locations in memory of the actual images and the display
parameters (position, rotation, size, etc.). A number (from 0 to
15) is used to refer to each object, and to select which object
is currently being manipulated.

To view a 3-D image, let's first make sure things are back to
normal:

Ready ABORT

and set a text window so that text doesn't scroll over our 3-D
images:

Ready O 40 20 24 WINDOW ERASE

3-D GRAPHICS 8.2

Now let's load an image from disk into a free area of memory.
The binary file "XYZ" on the GraFORTH disk contains an image of
three arrows, each a different color, and each pointing a
different direction. This is the same object that was used in
the PLAY demonstration in Chapter 1.

Ready CR 132 PUTC PRINT " BLOAD XYZ,A2816 " CR

Before we can view "XYZ", we have to initialize the internal 3-n
graphics array. Since we're starting from scratch, enter the
word OBJERASE. OBJERASE clears the array, and should be used
when beginning all 3-D programs.

Ready OBJERASE

Now we want to assign a number to the object we're about to view.
Remember that GraFORTH can handle up to 16 objects at a time.

The word OBJECT is used to specify which object to manipulate.
OBJECT removes a number from the stack, and uses this number to
select the current object. Let's give the image "XYZ" the number
0 in the array:

Ready 0 OBJECT

For our example, we will want the shape to be drawn automatically
after each entered command. To do this, the word AUTODRAW is
used. AUTODRAW removes a number from the stack. If this number
is 1, then the currently selected object will automatically be
drawn after each graphic command. If the number is 0, then
automatic drawing will .not occur. (Entering the word DRAW will
draw the objects when AUTODRAW is not in effect.) Let's turn on
automatic drawing with AUTODRAW:

Ready 1 AUTODRAW

We've initialized the array, set object number 0, and turned on
automatic drawing, but we haven't specified where the current
object is in memory. The word OBJADR is used to specify this
address. We loaded the object into memory starting at 2816, so
this is the number we give to OBJADR:

Ready 2816 0BJADR
At this point (because AUTODRAW is turned on) the image will
appear on the screen. Right now it looks like a single arrow

with a line through it, but that's only because we're seeing it
head-on.

3-D GRAPHICS 8 -3

GraFORTH has 12 separate words for controlling the position,
size, and orientation of 3-D obhjects. We'll introduce these
words properly in a bit, but to give you a taste, let's rotate
the image a little for better viewing:

Ready 14 YROT

Now it's beginning to come into view, and you can see parts of
all three arrows. Let's move it a little more:

Ready 16 XROT
and add a little perspective:
Ready 6 SCALZ

3-D Image Format

Just as two-dimensional graphics use Cartesian coordinates
labeled X and Y, three-dimensional graphics use a Cartesian
coordinate system with the three directions labeled X, Y, and Z.
The arrows in "XYZ" represent the three directions, or three
'axes'. X is a point along the horizontal, from left to right.
Y is a point on the vertical, from top to bottom. Z is a point
from rear to forward, pointing at the viewer.

The points that make up a 3-D image are expressed as three
numbers, one for each of the X, Y, and Z coordinates. The valid
range for each of these numbers is -128 to +127. Each arrow lies
on an axis, with two coordinates equal to zero, and the ends of
each arrow reaching from -128 to 127. At the center of the cube,
where all three arrows meet, the three coordinates are all equal
to zero.

3-D GRAPHICS 8 -4

l —.428

s E
_N—
/
\\,/
S
1127
—
N
S (XA
R N

A8

The above diagram shows the limits for each of the three
coordinates. Note that these 1imits define a "cube of space",
256 units along each side. A1l 3-D objects reside in this space.
When more than one object is being displayed, each object has its
own 3-D space, though these spaces may overlap or even coincide
on the screen.

Image Parameters

Once an image has been loaded into memory and selected with
O0BJECT and OBJADR, it can be rotated, positioned, scaled, and
translated in a number of ways.

Rotation

An image can be rotated around any axis, using XROT, YROT, or
ZROT. XROT rotates the image around the X-axis, YROT around the
Y-axis, and ZROT around the Z-axis. Each of these words removes
a number from the stack and rotates the image to the selected
angle. Angles are specified in units between 0 to 256 rather
than degrees. An entry of 0 to YROT (or for that matter, XROT or
ZROT) rotates the image around to a normal position facing the
viewer. An entry of 64 rotates to 90 degrees, 128 rotates to 180
degrees, and so forth, until 256, which (1ike 360 degrees) is the
same as zero: a full revolution.

3-D GRAPHICS 8 -5

Earlier, we used XROT and YROT to tip the image a bit so that we
could get a better view. We can also use a loop and cause the
image to rotate a full circle. The following word definition
executes YROT repeatedly, with an increasing rotation value:

: YSPIN

260 0 DO

I YROT

4 +LOOP ;
Ready YSPIN
When YSPIN is finished, the object has a Y rotation of 0. To get
it back to our previous view, we enter the appropriate value for
YROT again:
Ready 14 YROT

XROT and ZROT can, of course, be manipulated in identical ways.

Scaling

The image can be changed in width or height with the words SCALX
and SCALY. Both of these words remove a number from the stack to
select the given X or Y scale. The valid range is from -31 to
+31. Numbers outside of this range will be "folded back" into
the range. When the 3-D object array is initialized with
OBJERASE, SCALX and SCALY are set to 16. Try these examples with
I|XYZII:

Ready 25 SCALX

Ready 8 SCALY

Ready 4 SCALX

Setting a scale of zero causes the object to have no "thickness"
at all:

Ready 0 SCALX
Negative scale numbers reverse the image:

Ready -8 SCALX

3-D GRAPHICS 8 -6

Note: This reverse scaling is useful in unexpected ways. For
example, if you are creating the image of a bird, you only need
one wing image. The other wing is simply the first with one
negative scale number to reverse the image.

Here's a programming example of scaling:
Ready : SOUASH 12 -12 DO I SCALX LOOP ;
Ready SQUASH

Since for most graphics applications you will want to change both
the X and Y scale to change the total size of the object, the
GraFORTH word SCALE is provided. SCALE has the same form as
SCALX and SCALY. It simply sets both SCALX and SCALY to the same
value:

Ready 5 SCALE
Ready 12 SCALE

Three-Dimensional Perspective

There is a fourth scaling word in GraFORTH, SCALZ. SCALZ doesn't
change the size of the object in the same way that the other
scaling words do; instead it changes the perspective of the
object. Entries for SCALZ are also in the range -31 to 31. The
default value for SCALZ is zero, which doesn't provide
perspective views. (The front of a cube, for example, will be
the same size as the back.) If you enter a nonzero number for
SCALZ, perspective will be provided. If the entry is positive,
the front of the object will be larger than the back. If the
entry is negative, "reverse perspective" occurs, a most unusual
phenomenon! You may wish to try the following examples:

Ready 20 SCALZ YSPIN
Ready -10 SCALZ YSPIN
Ready N SCALZ YSPIN

Note: When SCALZ is nonzero, images take about 20% Tonger to
draw in exchange for the perspective features.

3-D GRAPHICS 8 -7

Also, SCALZ uses a fast algorithm that closely approximates true
perspective. However, if you are displaying an image that has
ends of lines meeting at the middle of a 1ine, and you are using
large amounts of perspective, the image may begin to distort. If
this happens, break the image up into a series of shorter lines,
so that all endpoints meet other endpoints, rather than meeting a
line itself.

Position

Three-dimensional images can also be placed anywhere on the
screen with the words XPOS and YPOS. XPOS and YPOS remove a
number from the stack to determine the X or Y position on the
screen of the center of the 3-D cube. Especially if the scale is
large, to avoid screen wrap-around, ample room must be left on
either side for the edges of the images. The valid entries for
XPOS are 0 to 255; valid entries to YPOS are 0 to 191. The
default values are 128 for XPOS and 96 for YPOS, which is the
center of the screen.

To move the image around, let's first make it a bit smaller, to
avoid wrap-around, then try a few different positions on the
screen:

Ready 5 SCALE

Ready 50 XPOS

Ready 40 YPOS

Ready 200 XPOS

We can cause the feared wrap-around by placing the object close
to one of the edges:

Ready 5 YPOS
Now let's move the image back to a more reasonable position:

Ready 96 YPOS

3-D GRAPHICS 8 -8

Translation

Translation occurs when the object is moved, not on the flat
video screen, but within its own 3-dimensional space. In
GraFORTH, objects can be translated along the X, Y, or Z axis
with the words XTRAN, YTRAN, and ZTRAN. When using translation,
you must keep the image inside the confines of its "cube of
space". If you do not, then "3-D wrap-around” will occur,
because GraFORTH cannot represent points outside of its cube of
3-D space.

Our current image, "XYZ" already reaches to the edges of its
space on all three axes. We can translate it, but wrap-around
will occur immediately:

Ready 5 XTRAN

For some examples of translation, let's first load another 3-D
image, one that doesn't fill its space. We'll load and set up
the image "HOUSE":

Ready ERASE

Ready CR 132 PUTC PRINT " BLOAD HOUSE,A3000 " CR

Ready 1 OBJECT 3000 OBJADR

The image of a house should appear. Let's get a better view:
Ready 20 XROT

Ready 10 YROT

Ready 8 SCALZ

Ready 10 SCALE

Now the house can be translated. It can be moved about a bit
before causing wrap-around. (In the next section, you'll see how
to determine the true size of an object from the IMAGEDITOR.)
Ready -50 ZTRAN

Ready 50 ZTRAN

Ready -25 XTRAN

3-D GRAPHICS 8 -9

Just for fun, try using YSPIN with the house, now that it has
been translated away from the center of its space:

Ready YSPIN

Object Color

You noticed that each of the three arrows in "XYZ" was a
different color. 1Images can be created with or without colors
specified. If no color is specified, then the object's color can
be determined when it is drawn later, using OBJCOLOR. O0BJCOLOR
removes a number from the stack to select the color of the
current object. The usual GraFORTH color numbers are used.

The house does not have a set color, so we can set its color with
0BJCOLOR:

Ready 1 OBJCOLOR
Ready 5 OBJCOLOR

Note that 3-D graphics, 1ike two-dimensional and character
graphics, can be done in either INVERSE or NORMAL, and either
ORMODE or EXMODE, producing a wide variety of graphics effects.
We encourage you to try some 3-D graphics commands with various
combinations of display modes.

At the end of this chapter is a discussion of the program PLAY,
which enables you to set all of these parameters (except for
O0BJCOLOR) into motion. PLAY is very useful in getting an
intuitive feel for exactly what each of these parameters does.

The Image Editor

On the GraFORTH system disk is a file called IMAGEDITOR, which

contains a program enabling you to create your own 3-D images.

To use the image editor, first delete any new words on the word
library to make room, then type:

Ready ABORT

Ready READ " IMAGEDITOR "

3-D GRAPHICS 8 - 10

(NOTE: The image editor is a fairly large program. On
non-language card systems, loading the image editor will move the
top of the word library into the same memory used by the text
editor program. If the editor is loaded into memory, it will
overwrite the top of the word library, forcing you to reach for
the power switch, as the GraFORTH system will become inoperable.
After using the image editor, remember to FORGET the program
before using the text editor.)

Now run the program:
Ready RUN

You will see a list of commands to the right and a prompt: "Enter
command:". The image editor works with one 3-D image at a time.

Address and Image Selection

As in the character editor, you must select a work area address
(or use the default address). To select an address, press "A"
for "Address". You will see the prompt:

Enter File Address :

followed by the number "2816". (You should be getting pretty
familiar with that number!) If you want to use another area of
memory, enter that address. For this example, just hit <return),
and the address 2816 will be selected.

If you are doing these examples sequentially, the image "XYZ"
will still be in memory at 2816. If you've turned the Apple off
since that time, you will need to load it again. Type "G" for

"Get" and enter the filename "XYZ". The file will be loaded into
memory.

Getting a Good View

If the image was already in memory, it won't appear until you
rotate it or move it on the screen. Images can be rotated,
positioned, and scaled from the image editor.

To rotate the image, type "R". You will see:

Rotate [X (num) to Z (num)] :

3-D GRAPHICS 8 - 11

For this command enter the letter of the axis you want to rotate
around followed by the angle you want to rotate. For this
example, type "Y16". The image will rotate around the Y-axis.
Type "R" again and enter "X16". Now you can see the arrows well.

To scale the object, type "S". You will see the prompt:
Scale [(num), or X,Y,Z (num)] :

To scale X and Y simultaneously, simply enter a number. To scale
one of the coordinates, type X, Y, or Z, and then the scale
number. Since we're keeping the image in the corner of the
screen, it's best to keep the scale small. The scale is
initially set to 8.

To change the position of the object, type "P". You will see:
Position [X (num) or Y (num) J :

Enter an X or a Y followed by the desired screen position. The
image has an initial screen position of X=64 and Y=48.

You can choose a color for the image, if the color is not already
set in the image file. Press "C" for "Color" and enter the
desired color number. You can also choose between EXMODE and
ORMODE views. Press "M" for "Mode", then enter "X" for EXMODE or
"0" for "ORMODE".

Image File Entries

Now type "L" for "List" to see the numbers that make up the
image. You can press <return)> to see all of the entries or press
ConTRoL-C to stop. Remember that, as explained above, GraFORTH
uses Cartesian coordinates, a system of three numbers for each
defined point.

3-D GRAPHICS 8 - 12

Each entry in the IMAGEDITOR listing has the following
information:

1. Whether the point is to be (M) moved to without drawing, or
(D) drawn to from the previous line ending. (This means that
each image file must begin with (M), not (D), since there are
no previous lines at that time.)

2. What color should be used for the line. The color number (if
present) is directly under the letter "C" in the heading.
(If it is desired to use the word "0OBJCOLOR" to specify
object color, then don't make any color entries within the
image file.)

3. The X, Y, and Z coordinates of the point (each coordinate
lies within the range -128 to 127).

4, The address of the entry. Each entry occupies four bytes.

The last six lines of the image file can also be seen by pressing
"E" for "Enter". We will use the "Enter" command in a moment to
create our own 3-D shape. For now, press <{return)> to leave the
"Enter" mode.

While using the image editor, you may want more screen space for
text and less for image drawing, or vice versa. To accomplish
this you can use "W" to move the text window up or down, position
the image using "P", and scale the image using "S". The "List"
and "Enter" commands will use as many lines as the text window
allows.

Sometimes, while adjusting the image position, the image will
"wrap around" on the graphics screen. If you want to clean up
the screen, type "W" and reenter 14 or some other window top
value. "W" clears the screen when it sets a new window.

Creating New Images

Now we will create our own image, a cube. First, we need to
erase "XYZ". Press "Z", and you will see:

Erase File (Y/N) :
Type a "Y" to erase the file. The image won't disappear right

away. (If the presence of the old image disturbs you, press "W"
and enter 14 to cause the "Window" command to erase the screen.)

3-D GRAPHICS 8 -13

So that we will be able to see all sides of our object as it is
created, enter a Z scale of 8 for perspective (press "S", then
“Z8"). Now press "E" again. Notice that no file entries are
listed, since we have erased them. You will see a prompt:

(M)ove, (D)raw, (-) Delete, (CR) Quit :

Since the first entry must be a move, type "M". You will be
prompted for a color. Let's not use a color, so that later we
can select its color with OBJCOLOR. Just press <return).

You will then be prompted for X, Y, and Z values in turn. We're
going to start with the point at the lower left front corner of
the cube. X at the left is -127, so enter -127 and press
<return>. Y at the bottom is 127. Enter 127 and press <return).
Z at the front is 127, so enter that and press <return).

You still won't see anything drawn, because we have only defined
a single point, and points aren't plotted in GraFORTH 3-D
graphics, only lines. Now let's draw our first line. Type "D"
this time instead of "M". Now enter an X value of 127 (remember
the last entry was ~127). We want the other two values to stay
the same. In this "Enter" mode, to keep a previous value, just
press <return>. The last value will be repeated. Press <return)>
for both Y and Z. Now a line will appear from left to right
(from X = =127 to X = 127).

Now repeat the entry procedure, pressing "D" each time and

changing only one number per entry, pressing <return)> for the
others:

7 to -127
X to -127
and Z to 127 again.

These entries will draw a square at the bottom of the image
space. (If the view isn't very good, press <return> to leave
"Enter" mode, change the rotation or the scaling, then press "E"
to return to "Enter" mode.)

Note: If at any time you make an incorrect entry, just finish
the entry, then press "-". "-" deletes the last entry in the
file.

Now if we change Y to -127 and repeat the entire procedure, we
will have most of the cube.

3-D GRAPHICS 8 - 14

At this point three edges are still missing. Can you figure out
how to draw the missing edges?

The solution is to (M)ove to each of the following locations, and
(D)raw a vertical line (using Y) from bottom to top:

1. (M) X =127, Y =127, Z =127
2. (D) X (same), Y = -127, Z (same)
3. (M) X (same), Y = 127, Z = -127
4, (D) X (same), Y = =127, Z (same)
5. (M) X = =127, Y = 127, Z (same)
6. (D) X (same), Y = -127, Z (same)

Saving the Image File

Now we can save our cube. Press <return> with no entry to leave
the "Enter" mode, then press "K" for "Keep". You will be
prompted:

Enter File Name to Keep :
Enter a file name here. The GraFORTH system diskette already
contains a file named "CUBE". (It contains a cube identical to

the one we just made here.) If you're using another disk, you
can use the filename "CUBE" or another filename.

Three-Dimensional Display Methods

From within a program, the word DRAW is usually used instead of
AUTODRAW to draw 3-D images. This way, several parameters can be
changed at once before the next image is drawn. When AUTODRAW is
off, executing DRAW causes the images to be drawn.

Aside from the mathematical methods (described in Appendix B),
GraFORTH has a rather complex display method for 3-D images. In
general, when a DRAW command is issued, the following events
occur:

3-D GRAPHICS 8 - 15

1. The drawing routines are directed at the graphics screen that
is not currently being displayed, so that the drawing won't
be seen.

2. The previous image on the invisible screen is "undrawn",
using information stored when it was drawn.

3. The new image is drawn.
4, The display is switched to the freshly drawn screen.

This method guarantees high-quality animation images, since the
entire process of drawing is concealed from the viewer.

You may wish to note that character graphics, discussed in the
last chaptes, also draws to both screens, so that character and
3-D graphics can be freely intermixed.

Redrawing Without Change

For maximum speed, an object is only redrawn by DRAW if a new
command is issued to it. So in a program with several objects,
only those that have been referenced since the last DRAW will be
redrawn. Example:

0 OBJECT 16 XROT
3 OBJECT 24 YROT
DRAW

[

Only objects 0 and 3 will be redrawn when DRAW is executed.

If an object has been changed and then drawn, the images of the
object on the two graphics screens will not be the same. If
other objects are then repeatedly changed and drawn, causing
GraFORTH to switch graphics screens, then the two unlike images
of the object will be alternated, causing a back-and-forth type
of residual motion.

Therefore, if several objects are being drawn independently, they
should be referenced (using the word OBJECT), if not changed, to
cause the Tmage to be redrawn. This way, the images on both
graphics screens will always be updated. For example,

1 OBJECT

causes a redraw of obje;t 1 at the next draw command.

3-D GRAPHICS 8 - 16

Erasing Individual Objects

The GraFORTH word OFF is used to "undraw" an object but not
redraw it. Remember that the DRAW command ordinarily erases the
current image before redrawing it. OFF causes the next DRAW to
erase the current object without a redraw. Later DRAW commands
will cause the object to be redrawn again. The following example
will cause the next DRAW command to erase object number 3.

Ready 3 OBJECT OFF

Overlapping Objects and UNDRAW

In a case where there are several overlapping objects, or objects
are drawn over text, it is best to use "EXMODE", since this
causes drawing and undrawing to occur without destroying the
screen's original contents. Alternatively, if all the objects
are in continuous motion, it may be desirable to use the word
UNDRAW.

UNDRAW simply erases a hlock of character spaces specified by
BLKSIZE, just as UNBLK does. However, UNDRAW also causes the
next DRAW command to not do an automatic line "undraw" before
drawing the next image. This way, you can use UNDRAW to erase
the 3-D images yourself. Using UNDRAW is frequently faster than
the automatic 1ine undraw that is carried out by DRAW.

For example, let us say we have an image in the center of the
screen (at X = 128, Y = 96) that extends 20 plotting points in
radius around this point. Remember that numbers entered to
BLKSIZE refer to characters, not points. Text characters of size
0 are 7 points wide and 8 points high. So an entry to BLKSIZE of
6 by 5 will cover an area 42 by 40 points, large enough for our
sample image. Remember that UNDRAW, 1ike UNBLK, is controlled by
VTAB and HTAB. Let's set the blocksize, then position and
execute an UNDRAW before the next DRAW:

Ready 6 5 BLKSIZE
Ready 18 VTAB 17 HTAB UNDRAW DRAW

3-D GRAPHICS 8 - 17

Remember also that UNDRAW, 1ike PUTBLK and UNBLK, doesn't advance
HTAB across the screen as for printing. Once positioned, UNDRAW
can be used repeatedly over the same area.

Other Effects

If you wish to prevent undrawing of the images (for special
effects), simply use UNDRAW, but place the undraw block away from
the image. For speed, select a blocksize of 1 by 1 in this case.

It is also possible to prevent screen sequencing altogether,
using SEQUENCE, so that the process of drawing may be observed.
SEQUENCE removes a number from the stack. If this number is a 0,
screen sequencing is turned off. If the number is 1, screen
sequencing is turned back on. This example will stop screen
sequencing:

Ready O SEQUENCE

Usually used with "0 SEQUENCE", the word "SCREEN" selects which
graphics screen to display. The screens are numbered 0 and 1.
This example displays screen number 1:

Ready 1 SCREEN

PROFILE

There is another program on the GraFORTH system disk used for
creating 3-D images, called PROFILE. PROFILE acts as a sort of
graphics "lathe", creating images that are cylindrical in nature
from a set of points defining the profile of the image. The file
"CHAL" on disk contains the image of a chalice, and is an example
of the kinds of images that can be created with PROFILE.

To run PROFILE, first make sure that there is room on the word
library hy FORGETting any extra words, then type:

Ready READ " PROFILE "
Ready RUN

3-D GRAPHICS 8 - 18

Setting Parameters

You will see the PROFILE heading and some instructions. We're
going to use PROFILE in this example to create a simple cone.
The first question asked is:

Enter number of polygon sides :

This determines how smooth the cone's circumference will be. For
a perfect circle, you would ideally want to enter an infinite
number of sides. Unfortunately, the Apple does not contain quite
this much memory. For this example, enter a 20.

The next prompt reads:
Enter Object File Address :

with a good ol1' 2816 already selected for you. Images created
with PROFILE can easily use a lot of memory. Usually you will
want to use the area of memory beginning at 2816 or the space
above the word library. (To find this address, print the

value of PRGTOP after loading PROFILE, and add about 50 or 100 to
this address for extra space.) For this example, just press
<return> to keep the address 2816.

Entering Data from the Keyboard
Now you will see:
Data from [K]eyboard or [DJ]isk ?

You can either enter the profile coordinates directly from the
keyboard or use a text file that contains the coordinates. Here
we will enter the coordinates directly. Press "K" for
"Keyboard". You will see:

Enter X,Y pair (end = "E") :

This is where you actually enter the coordinates. The Y
coordinate is the vertical position in the profile. The valid
range is -128 to 127. The X coordinate can actually be
considered a radius, since it determines the distance from the
edge to the center of the object. Its valid range is also -128
to 127, but negative—entries are identical to positive ones, so
only numbers from O to 127 need be used.

3-D GRAPHICS 8 -19

We're going to start our cone as-a single point, and work down.
The top of the cone is at Y = -128, and the radius (X) is zero.
As we move down with increasing Y values, we'll also steadily
increase the radius. Make the following entries:

Enter X,Y pair (end = "E") : 0,-128
Enter X,Y pair (end = "E") : 32,-64
Enter X,Y pair (end = "E") : 64,0
Enter X,Y pair (end = "E") : 96,64
Enter X,Y pair (end = "E") : 127,127
Enter X,Y pair (end = “"E") : E

The last entry must be "E". For a few seconds, tihe phrase:
Generating image file (824 bytes) . . .

will appear on the screen as PROFILE computes the points that
make up the cone, then the screen will be erased and the cone
will appear. Notice that the cone has 20 vertical lines around
its circumference. This is because we selected 20 polygonal
sides. There are 4 circles around the cone and a point at the
top. These are hecause we made 5 profile entries. At the bottom
of the screen will be the message:

Enter objéct file name :

This is so you can save the 3-D object to disk. If you want to
save the cone to disk, enter a filename and press <return>. If

you don't want to save the image, just press <return)> and the
program will end.

Entering Data from Disk

As discussed earlier, PROFILE can also read a list of coordinates
from a disk file. The textfile "BIGCHAL" contains a list of
coordinates that describes the profile of a chalice. You may
wish to see this 1ist at some point. When PROFILE is no longer
in memory, you can enter the text editor, get the file BIGCHAL,
and list it. You will see a 1ist of numbers similar to the one
we entered to make the cone, but longer. Note that the last

3-D GRAPHICS 8 - 20

entry in the file is "E", marking the end of the list.

For now though, let's run PROFILE again, this time using the
textfile BIGCHAL instead of keyboard entries. RUN the program,
select 8 polygon sides, the address 2816, then "D" to read data
from disk. You will then be prompted:

Enter Data File Name :

Enter the name "BIGCHAL". The disk will whir for a bit, then the
message:

Generating image file (2724 bytes) ...

will appear. After a pause, the chalice will appear on the
screen. As before, you can either save the 3-D image to disk, or
press <return> to exit.

Memory Considerations

Because PROFILE can generate very large image files rapidly,
image size checking has been added to help prevent overwriting
important parts of memory.

Usually you will use one of two areas of memory for the 3-D image
file when using PROFILE: either the free space from locations
2816 to 5887, or the space above the top of the word library. If
you select an address between 2816 and 5887, PROFILE will prevent
the image from extending beyond location 5887.

If you select an address greater then 5887, then PROFILE assumes
the image is above the word library. It then checks for the
presence of a language card. If you are using a language card,
PROFILE will allow images to extend to location -16385,
immediately below the Apple][I/0 area. If you do not have a
language card, PROFILE prevents the image from extending beyond
location -26113, immediately below DOS.

If the image is too large to fit in the provided space, the image
will not be created or drawn, and the following message will
appear:

Not enough room here.
(Requires nnnn bytes.)

with nnnn being the actual number of bytes the image requires.

3-D GRAPHICS 8 - 21

Notice that if the starting address you select is in a "safe"
area of memory, then PROFILE will prevent the image from
clobbering important information. However, if you select an
address in the middle of something important, you'1l find
yourself having to reboot the system from scratch....

PLAYing Around

The program PLAY was briefly introduced in Chapter 1. PLAY was
designed for you to "play" with a 3-D image, manipulating its
rotation, scale, translation, and position parameters. Any or
all of these parameters can be set into motion, giving you a
rapid intuitive "feel" for what each of the parameters does. And
PLAY is a lot of fun!

Note that PLAY, 1ike IMAGEDITOR, uses the same memory as does the
text editor on non-language card systems. Be sure to forget any

extra words in the word library (PLAY is rather a large program),
then type:

Ready READ " PLAY "
Ready RUN

The instructions are fairly self-explanatory. Once the image is
loaded and you begin "playing", you can select a parameter with
one of the number keys. To set the parameter in motion, press
one of the arrow keys. The right arrow increases the parameter
value; the left arrow decreases it. By pressing several number
keys and arrow keys alternately, you can set a number of
parameters in motion at once.

If any one parameter gets out of hand, you can press "F" to
"freeze" its motion, leaving it at the current value. You can
also press "D", to bring it back to its "Default" value.

If you want to pause everything, just press ConTRoL-S. The
display will pause, and a flashing cursor will appear in the
upper-left corner. Just press any key to resume. If you

want to bring everything to a complete halt, press ESC. All
motion will stop and all parameters will be set back to their
default values. Finally, typing "?" will display the instruction
screen again, and "Q" will quit the program.

3-D GRAPHICS 8 - 22

Let's answer the start-up questions and get things moving:
The first prompt you will see is:
Image in [M]emory or on [D]isk?

If you already have an image in memory, press "M". If you want
to load an image from disk now, press "D". For this example,
press "D". Next is the now-famous address question:

Enter image address :

again with the number 2816 waiting for you. If you want to use
the address 2816, just press <return>; otherwise enter the
address you want. Press <return)> for this example. If you
selected to load an image from disk a moment ago, you will then
see:

Enter image filename :

Type the name of the file you want to load. Let's load the file
"HOUSE". Lastly:

Press Return to begin...

The screen will be erased and the image will appear. Along the
right side are the values for each of the parameters. When you
press a number key, the selected parameter will also be displayed
on the bottom 1ine with its current value and increment.

Pressing the arrow keys will change the increment and set the
object in motion.

You'll also see a question mark in the lower right corner. This
is just to remind you that the instructions can be displayed at
any time by typing "?".

With PLAY, it's very easy to get some of the parameters out of

bounds, causing screen or "space" wrap-around. It doesn't hurt
anything, and it can sometimes produce rather amusing effects!

3-D GRAPHICS 8 - 23

Conclusion

We've now looked at all three kinds of graphics: two-dimensional
graphics, character graphics, and three-dimensional graphics.
With the information presented in these chapters, you can
incorporate a wide variety of animated color graphics effects
into your own programs, then use SAVEPRG to produce a system that
boots and runs them automatically!

The next chapter explains how you can create music and sound
effects with GraFORTH. (We'll also mention another program you
may be interested in...) So without any further delay, on to
chapter 9!

3-D GRAPHICS 8 - 24

CHAPTER NINE: MUSIC WITH GRAFORTH

Chapter Table of Contents: Page
Introduction 9-2
VOICE 9-2
NOTE 9-3
Determining Duration and Pitch 9-3
Useful Music Words 9-4
Postscripts 96

MUSIC WITH GRAFORTH 9-1

Introduction

GraFORTH has a sophisticated music synthesizer that plays through
the Apple][built-in speaker. Notes may be played in nine
distinct voices (not simultaneously). These features allow you
to incorporate music or sound effects into your applications or
game programs.

The two GraFORTH words that control the synthesizer are VOICE and
NOTE.

VOICE

The GraFORTH word VOICE selects one of 9 voices in which to play
notes. VOICE removes a number from the stack, and uses it to
select a given voice. Here are the VOICE numbers and their
meanings:

Number Voice

-6 to -1 Selects a constant 'duty cycle' for the note, producing
a note that is constant in volume. -1 = 50% duty
cycle, =2 = 25% duty cycle, -3 = 12,5% duty cycle, etc.
Smaller duty cycles decrease volume and increase the
amount of high-frequency in the note. (Voice numbers
below -2 sometimes produce inconsistent volumes for
different pitches, but may be used for interesting
sound effects.)

0 Note begins at 50% duty cycle, then decreases to 0%.
The note seems to die away.

1 The note begins at 0%, increases to 50%, then
decreases again.

2 The note begins at 0%, then increases to 50%. The
note seems to increase in volume.

MUSIC WITH GRAFORTH 9 -2

NOTE

The GraFORTH word NOTE actually causes a note to be played. NOTE
removes two numbers from the stack to select pitch and duration,
then plays the note. The form for NOTE is:

¢pitch> <duration> NOTE

The valid numbers for pitch and duration are in the range 2 to
255. Larger numbers for duration produce longer notes. Larger
numbers for pitch produce lower pitched notes.

Let's play a couple of notes. The voice used if one has not been
selected is voice 0. This example plays an "A" two octaves below
middle A:

Ready 124 255 NOTE

Let's try a different note:

Ready 62 128 NOTE

This plays a note an octave higher for half as long. Now let's
change the voice and play the same note:

Ready -1 VOICE
Ready 62 128 NOTE

Notice the change in tone quality. Experiment with the different
voices to hear their differences.

Determining Duration and Pitch

The duration of a note is directly related to the size of the
duration number. 255 can be considered a whole note, 128 a half
note, 64 a quarter note, and so forth. Of course, if you want to
play notes at a faster tempo, simply use smaller numbers.

MUSIC WITH GRAFORTH 9 -3

Here is a table relating notes to the pitch numbers which produce
them:

Note Octave 1 Octave 2 Octave 3 Octave 4

A 248 124 62 31
A# 234 117 58 29
B 221 110 55 27
c 209 104 52 26
C# 197 98 49 24
D 186 93 46 23
D# 175 87 43 21
E 166 83 41 20
F 156 78 39 19
F# 147 73 36 18
G 139 69 34 17
G# 131 65 32 16

Useful Music Words

If you don't want to look up the pitches for each note, you can
use the following program to generate the table and store it in a
string array called "PITCH", Each element of PITCH, instead of
containing a character, contains the pitch value for a note.

50 STRING PITCH

: COMPUTE.NOTES
24870
48 0 DO
DUP 100 / I PITCH POKE
pDup 18 / -
DUP 1655 / -
LOOP DROP ;

Ready COMPUTE.NOTES

Running COMPUTE .NOTES generates the table in PITCH. Now the
pitch values for the 48 notes (numbered O through 47) can be
found by reading the value from the proper element of PITCH. For
example, the pitch value for the note 3 in the table (a "C" from
the first octave) can be found in position number 3 in PITCH:

MUSIC WITH GRAFORTH 9 - 4

Ready 3 PITCH PEEK .
209

To play this note as a half note, you can enter:
Ready 3 PITCH PEEK 128 NOTE -

You can also define a short word that retrieves the pitch value
for you:

Ready : GETPITCH PITCH PEEK . ;

Ready 3 GETPITCH
209

This word can be used with NOTE:
Ready 3 GETPITCH 128 NOTE

Since the notes are now numbered from 0 to 47, we can play all of
the notes in the scale by using a loop:

Ready 48 0 DO I GETPITCH 32 NOTE LOOP

With a 1ittle patience, we can put together a song! The
following word definition plays the first phrase from the "Happy
Birthday" song:

: HAPPY.B
12 GETPITCH 50 NOTE
12 GETPITCH 50 NOTE
14 GETPITCH 100 NOTE
12 GETPITCH 100 NOTE
17 GETPITCH 100 NOTE
16 GETPITCH 200 NOTE ;

For longer tunes, repeating the words GETPITCH and NOTE will
waste a lot of space. We wanted to show here how simply the
tunes can be constructed. A much more efficient method is to
store the numbers in memory or on the stack, and read them and
play the notes from a loop.

MUSIC WITH GRAFORTH 9-5

Postscripts

Note: The quality of the synthesizer is higher than can be
demonstrated with the Apple][built-in speaker. The use of a
large external speaker is recommended for serious music work.
See the Apple][Reference Manual or your local dealer for
connection information.

For two-part music applications, the Electric Duet, also written
by Paul Lutus, is available from Insoft. The Electric Nuet plays
2 simultaneous notes through either the Apple speaker or an
external amplifier, and can be used to play music directly from
your GraFORTH programs. It contains a full feature music editor
with the ability to transpose both note pitch and duration.

Music can be directed to either the internal speaker or the Apple
J[tape output jack. The suggested price of the Electric Duet is
only $29.95. For more information, contact Insoft or your local
Apple dealer.

MUSIC WITH GRAFORTH 9 -6

CHAPTER TEN: FINAL WRAP

We've made it! You have now been introduced to the GraFORTH
system, from lanquage features to complex graphics. From here on
out, you will probably be using this manual more as a reference
quide than as a tutorial; therefore, we suggest you get
acquainted with the appendices. You will find the Word Library
listings invaluable, and the Index very helpful for finding those
definitions you've forgotten. The technical data section covers
very useful information we suggest you at least browse through,
and the GraFORTH diskette file 1isting and ASCII code tables are
excellent references when you need them.

Please note that if you are using or intend to use GraFORTH to
develop software for re-sale, we would like to talk with you.
Insoft represents fine software (such as this!) for Apple, IBM,
Atari, NEC and other popular microcomputers. Our royalty rates
are among the best in the industry, and our support team is
second to none. Let us show you why using our team of
professionals makes good sense!

If you decide to market software on your own, please call us for
information on a license agreement to use GraFORTH. There is no
fee for this license, however, we do have a few restrictions on
how it is marketed (We'll show you how to lock GraFORTH so that
onty your program can be run.) Either way, please contact:

Insoft Inc.

10175 S.W. Barbur Blvd.
Suite 202B

Portland, OR 97219

(503) 244-4181

You now have a graphics system that is quite nearly limited only
by your imagination! We hope you enjoy learning and using
GraFORTH as much as we have enjoyed the opportunity to bring it
to you!

FINAL WRAP 10 - 1

APPENDIX A:
WORD LIBRARY LISTING

The following is a list of the words in the GraFORTH word
library. The list includes the word name, a "before and after"
stack picture, the page number in the text where the word is
first introduced, and a brief description of what the word does.

The stack picture shown represents relevant numbers on the top of
the stack as letters. The top of the stack is to the right, as
indicated by a dash. Three dashes represent an empty stack. How
words use the stack can usually be inferred simply from the stack
picture.

The word descriptions here are not meant to be comprehensive.
For more information on each word, we suggest you refer back to
the text, using the page numbers provided.

GraFORTH WORD LIBRARY LISTING

Word Name Before After Page

’” e o 3-13
A set of quotes surrounding text causes the text to be compiled
into the program. Used with PRINT, ASSIGN, and READ.

SLIST - - - - - 5-30
Lists words in word library with hexadecimal addresses.

* - - - a - 5-30

a = address of the word that follows ', and prevents that word's
execution,

- - - - - - 4-14

Indicates the beginning of a program comment, to be passed over
by the GraFORTH compiler.

APPENDIX A: WORD LIBRARY LISTING A -1

GraFORTH Word Library Listing

Word Name Before After Page
* mn - p - 3-10
p=m*n (multiplication)

+ mn - p - 3-6
p=m+n (addition)

+LOOP n- --- 3-20

Marks the end of a loop structure, using n as a loop value
increment.

. o & v 5-32
Compiles a single byte within word definitions.

- mn - P - 3-10
p=m-n (subtraction)

-> (not applicable) 5-8
Causes the next variable reference to store the top stack value
into the variable, rather than placing the variable value on the
stack.

. n - - - - 3-6

Prints n.

/ mn - P - 3-10
p=m/n (division)

. - - - - - = 3-14
Marks the beginning of an executable word definition.

‘ - - - - - - 3-14
Marks the end of a word definition.

< nm- p - 3-23
p=1if n < m, otherwise p = 0.

(= nm- p - 3-23
p=11if n <= m, otherwise p = 0.

APPENDIX A: WORD LIBRARY LISTING A -

GraFORTH Word Library Listing

Word Name Before After Page
< nm- p - 3-23
p=1if n <> m, otherwise p = 0.
= nm- p - 3-23
p=1if n=m otherwise p = 0.
> nm- p - 3-23
p=1if n > m, otherwise p = 0.
>= nm- p - 3-23
p=1if n >=m, otherwise p = 0.
ABORT —m . 7-3

Restarts GraFORTH from scratch. The screen is erased, character
size of 0, color of 3, all stack pointers initialized to 0.

ABS n - m - 3-10
m = absolute numeric value of n.

AND nm- p - 3-23
p=11if both n and m are nonzero, otherwise p = 0.

AREG (variable) 5-31

Value of AREG is placed in processor A register before a CALL.
After CALL, contents of A register are loaded back into AREG.

ASSIGN a- =Nl 5-12
Places following quoted text into memory starting at address a.
AUTODRAW n- - - - 8-3

If n is nonzero, 3-D objects will automatically be drawn after
every graphic command. If n is zero, this feature is turned off.

AUTORUN n - - - 5-26
If n is nonzero, the top word library word will automatically
execute at every return to the system. If n is zero, this
feature is turned off.

APPENDIX A: WORD LIBRARY LISTING A -3

GraFORTH Word Library Listing

Word Name Before After Page
BASE (variable) 5-22

Value determines what base numbers are accepted and displayed in.
BEGIN 5 EE LE & 3-29
Provides a program return point for the words REPEAT and UNTIL.
BELL e o 3-3

Beeps the Apple speaker.

BINARY - == - - - 5-22

Sets number input and output to base two.

BLKSIZE hv- - - - 7-12

Selects a blocksize of h characters horizontally by v vertically
for use by PUTBLK, IUNBLK, and UNDRAW.

BYE = S 5-32
Exits GraFORTH to Apple monitor.
CALL a- - - 5-31

Loads processor registers from AREG, XREG, YREG, AND PREG, calls
machine language routine at address a, then stores register
values.

CASE: n - G 3-32
Selects and executes nth following word from list of words
numbered starting from 0.

CHRADR a- o 7-6
Selects a as address of current character set.

CHRSET (variable) 7-6
Value is address of defeult character set (2048).
CHRSIZE n - S 7-3

Selects character size for subsequent character printing using
PRINT, WRITELN, PUTC, and PUTBLK.

APPENDIX A: WORD LIBRARY LISTING A -4

GraFORTH Word Library Listing

Word Name Before After : Page
CHS m - n- 3-10
n=-m (change sign)

CLEOL . --- 5-4
Clears from the cursor position to the end of the current line.
CLEOP c e e 5.4
Clears from the cursor position to the end of the text window.
CLOSE e w Ei = 5-24
Causes DOS to close any open files.

CLRKEY i 2 & 5-20

Clears the Apple][keyboard strobe so that a key can be read
with GETKEY.

COLOR n- =a 6-6
Selects the color for 1ine and large character drawina.
CR -- - - - = 3-13
Prints a carriage return (ASCII value 141).

DECIMAL S = e 5-22
Sets number input and output to base ten.

DO mn - - 3-19

Initializes a loop, using n for an initial value and m as an
ending value.

DRAW - - - - - - 8-15
Causes all 3-D objects referenced since the last DRAW to be
drawn, using 3-D display methods.

DROP n - --- 3-7
Discards n from the stack.
DUP n - nn- 3-7

Makes a copy of n on the stack.

APPENDIX A: WORD LIBRARY LISTING A-5

GraFORTH Word Library Listing

Word Name Before After Page

EDIT 4-2
Loads from disk (if necessary) and runs the appropriate text
editor.

ELSE el e 3-27
Separates the two controlled areas in an IF - ELSE - THEN
construct.

EMPTY Xy - - - - 6-8
Erases a rectangular area from the last plotted point to (x,y).
ERASE sEw =a3 5-4
Erases both graphics screens.

EXMODE N - = = 6-10

Causes plotted points to turn on corresponding screen Tocations
that are off, and turn off locations that are on.

FILL Xy- i 6-4
Fills a rectangular area from the last plotted point to (x,y).
FORGET - & = o 3-17

Truncates the GraFORTH 1ibrary back to the word that follows
FORGET.

GETC - n- 5-20
Gets a single character from the keyboard, placing its ASCII
value on the stack.

GETKEY = 2 i n - 5-20
Reads the keyboard without waiting, returning an ASCII value.

Values over 128 are valid. Should be followed by CLRKEY.
GETNUM a- n - 5-14

Converts text string at address a into a number. Unsuccessful
conversions return O.

APPENDIX A: WORD LIBRARY LISTING A-6

GraFORTH Word Library Listing

Word Name Before After . Page

GPEEK Xy - n - 6-12
Examines point at screen coordinates (x,y). n is nonzero if
point is turned on, or 0 if point is turned off.

GR - - -aa 3-38
Reestablishes normal GraFORTH input and output, and sets the
graphic display mode.

HEX - - - - - - 5-22
Sets number input and output to base 16.
HOME = 5B = 5-4

Erases the screen inside the text window and sets HTAB and VTAB
to the upper left corner of the window.

HTAB h - -w 5-3
Sets the column for subsequent printing.

I - n - 3-19
Returns the current innermost loop value.

IF n- e 3-25

If n is nonzero, words between IF and THEN (or IF and ELSE) are
executed, otherwise execution continues after THEN (or between
ELSE and THEN).

INVERSE = e 6-9
Complements the color for all text and graphics displays
(including black-on-white text).

J e n- 3-20
Returns the loop value for the next outer loop.

K = i n - 3-21
Returns the loop value for the third outer 1loop.

LINE Xy - - 6-4

Draws a line from the last plotted point to (x,y).

APPENDIX A: WORD LIBRARY LISTING A -

GraFORTH Word Library Listing

Word Name Before After Page
LIST e ea - 3-3
Lists the words in the GraFORTH word 1ibrary.

LOOP e I~ 3-19

Marks the end of a loop structure, incrementing the loop value
and looping back to the word after NO if the loop value is less
than the ending value.

MAX mn - p - 3-10
p = the greater of m or n.

MEMRD a- --- 4-13
Reads and compiles text in memory starting at address a.
MIN mn - p - 3-10
p = the smaller of m or n.

MOD mn - p - 3-10
p = remainder after dividing m by n.

MOVMEM abn- - .- 5-30
Moves a block of n bytes from address a to address b.
NORMAL & e SE B 6-9
Resets normal color (white-on-black text) display.

NOTE pd- - 9-3
Sounds a note of pitch p and duration d in the current voice.
OBJADR a- .- 8-3
Selects a as address of currently selected 3-D object.
OBJCOLOR n- = = 8-10
Selects color of current 3-D object.

OBJECT n- < 8-3

Selects which object subsequent 3-D commands will refer to.

APPENDIX A: WORD LIBRARY LISTING A -

GraFORTH Word Library Listing

Word Name Before After Page

OBJERASE - - “ . 8-3
Initializes the 3-D image array. Should be used at the beginning
of 3-D graphics programs.

OFF S e 8-17
Causes the next DRAW command to undraw the 3-D object.
OR mn - p 3-23

p i1s bit-wise OR of m and n. (p is nonzero if either m or n 1is
nonzero, otherwise p = 0.)

ORMODE p—— - i 6-10
Causes points to be plotted regardless of what screen locations
are on or off.

OVER mn - mnm- 3-7
Copies m to top of stack.

PAD --- a - 5-15
Returns the address (812) of a 120-byte string space.
PEEK a- n - 5-6
Reads a single byte n from address a.

PEEKW a- n - 5-6
Reads number n from address a.

PICK MmN - Lmp - 3-7
Copies the nth stack item to top of stack.

PLOT Xy - - 6-4
Plots a point at (x,y).

POKE na- - - - 5-6
Stores single byte n at address a.

POKEW na- - == 5-5

Stores number n at address a.

APPENDIX A: WORD LIBRARY LISTING A-9

GraFORTH Word Library Listing

Word Name Before After Page
POP 3-22
Discards top return stack value.

POSN Xy - O 6-6

Establishes a position for a "last plotted point" without
plotting.

PREG (variable) 5-31
Value of PREG is stored in processor status register before a

CALL. After CALL, value of status register is stored hack into
PREG.

PRGTOP o a- 3-3
Returns the address of the top of the word library.

PRINT i = e 3-13
Prints following quoted text.

PULL D n - 3-22
Moves top return stack value to data stack.

PUSH n i 3-22
Moves top data stack value to return stack.

PUTBLK n- = & i 7-13

Draws a block of characters with present blocksize starting with
character number n at the current cursor position.

PUTC n- --- 5-19

Prints character with ASCII value n at the current cursor
position,

READ - - - - - 4-14
Reads and compiles text from file with following quoted filename.
READLN a - - == 5-12

Reads a 1ine from keyboard into string starting at address a.

APPENDIX A: WORD LIBRARY LISTING A -10

GraFORTH Word Library Listing

Word Name Before After ; Page

REPEAT G = i 3-31
Marks the end of the BEGIN - WHILE - REPEAT construct, causing
execution to jump back to words following BEGIN.

RND o n- 3-10
n is a random number.

RNDB = i n- " 3-10
n is a random number from O to 255.

RUN - B = 5-26
Executes the top word on the word library.

SAVEPRG --- --- 5-27
Saves current system to disk.

SCALE n- --a 8-7
Sets the X and Y scales for the current 3-D object.
SCALX n - aia - 8-6
Sets the X scale (width) for the current 3-D object.
SCALY n - - - - 8-6
Sets the Y scale (height) for the current 3-D object.
SCALZ n- - - - 8-6

Sets the Z scale (perspective) for the current 3-D object.
Faster drawing occurs with a SCALZ of 0.

SCREEN n - - - 8-18
Selects display of the given graphics screen (0 or 1).
SEQUENCE n - --- 8-18

If n = 1, automatic screen sequencing for 3-D drawing 1s enabled
If n = 0, sequencing is enabled. (Default=1)

SGN m- n - 3-10
=1ifm>0, O0ifm=0, -1ifm<O0,

APPENDIX A: WORD LIBRARY LISTING : A - 11

GraFORTH Word Library Listing

Word Name Before After Page

SIN m- n - 3-10
n is a scaled sine value for m, in the range -128 to 127,
repeating for every 128 numbers.

SPCE o - 3-13
Prints a space (ASCII value 160).

STACK - = & S 3.5
Toggles the stack display on or off.

STRING P - - - 5-9

Declares a string array with following name, setting aside number
of characters specified before STRING.

SWAP mn - nm- 3-7
Swaps position of top two stack values.
TEXT - e - i 3-38

Reestablishes normal GraFORTH input and output, and sets text
display mode (no graphics).

THEN - == - - 3-25

Marks the end of an IF - THEN construct, where execution
continues from.

UNBLK I - 7-14

Erases a block with present blocksize at the current cursor
position.

UNDRAW = S 8-17
Erases a block and prevents the next DRAW from performing an
automatic Tine undraw.

UNLINE Xy - L @ 6-8
Erases a line from the last plotted point to (x,y).
UNPLOT Xy - - - - 6-8
Erases a point at (x,y).

UNTIL n- e 3-29

If n = 0, execution jump back to words that follow BEGIN.

APPENDIX A: WORD LIBRARY LISTING A - 12

GraFORTH Word Library. Listing

Word Name Before After : Page

VALID — e n- - 5-14

n is nonzero if last GETNUM produced a valid number, otherwise n
= 0.

VARIABLE & S & w2 5-7

Declares a variable with following name. Any preceding number is
used as the variable's initial value.

VOICE n- --- 9-2

Sets the voice for subsequent NOTE commands. Valid numbers are
-6 to 2.

VTAB n- e 5-3
Sets the row for subsequent printing.
WHILE n - --- 3-31

If n is nonzero, execution continues after WHILE, otherwise
execution jumps to words after REPEAT.

WINDOW Lwthb - - - - 5-3

Sets a text window with left margin L, width w, top margin t, and
bottom marqgin b.

WRITELN a - SN S 5-12
Writes text to screen from string at address a.

XPOS n - oo 8-8
Sets X-position of current 3-D object to n.

XREG (variable) 5-31

Value of XREG is placed into processor X register before a CALL.
After CALL, value of X register is stored back into XREG.

XROT n - --- 8-5
Sets rotation of current 3-D object around X-axis to n.
XTRAN n- i 8-9

Translates current 3-D object along X-axis by n.

APPENDIX A: WORD LIBRARY LISTING A-13

GraFORTH Word Library Listing

Word Name Before After Page
YPOS n - L 8-8
Sets Y-position of current 3-D object to n.

YREG (variable) 5-31

Value of YREG is placed into processor Y register before a CALL.
After CALL, value of Y register is stored back into YREG.

YROT n - = s 8-5
Sets rotation of current 3-D object around Y-axis by n.
YTRAN n - - - 8-9
Translates current 3-D object along Y-axis by n.

ZROT n- - = 8-5
Sets rotation of current 3-D object around Z-axis by n.
ZTRAN n - = 8-9

Translates current 3-D object along Z-axis by by n.

APPENDIX A: WORD LIBRARY LISTING A - 14

APPENDIX A: WORD LIBRARY
BY SUBJECT GROUP

Numeric Operator Word's

CHS ABS SGN RND RNDB
MIN MAX POKEW POKE O

= > 4 >= =
OR AND PEEKW PEEK SWAP
DROP POP I J K
PULL PUSH DUP OVER PICK
MOD / b + -
SIN BASE DECIMAL BINARY HEX
MOVMEM VALID GETNUM

Program Branching or Control Words

+L0OP Loop DO REPEAT WHILE
UNTIL BEGIN IF THEN ELSE
BYE STACK FORGET VARIABLE RUN
AUTORUN ABORT READ MEMRD .

H CASE: (CLOSE EDIT
PRGTOP SAVEPRG ->

Input/Output Operator Words

HOME
CLRKEY

Text Display Function Words

CLEOP
PUTC

CLEOL

.

GETC
$LIST

GETKEY
LIST

VTAB HTAB CHRADR CHRSET CR

SPCE TEXT WINDOW PRINT ASSIGN
" STRING PAD READLN WRITELN
APPENDIX A: WORD LIBRARY LISTING

A-15

General Graphics Words

GR GPEEK ORMODE EXMODE ERASE
COLOR INVERSE ~ NORMAL

Two-Dimensional Graphics Words

POSN PLOT UNPLOT LINE UNLINE
FILL EMPTY

Character Graphics Words
PUTBLK CHRSIZE BLKSIZE UNBLK

Three-Dimensional Graphics Words

SCREEN DRAW SEQUENCE UNDRAW AUTODRAW
OBJECT OBJADR OBJERASE OBJCOLOR SCALE
SCALX SCALY SCALZ XPOS YPOS
XTRAN YTRAN ZTRAN XROT YROT
ZROT OFF

Miscellaneous Words

CALL PREG AREG XREG YREG
: ! NOTE VOICE BELL

APPENDIX A: WORD LIBRARY LISTING

A - 16

APPENDIX B: TECHNICAL DATA

Table of Contents Page
GraFORTH Memory Map B-2
Page Zero Map B-3
Image Data Map B-4
Mathematical Method B-5
Image Table Format B-6
Word Library Structure and Compilation B-7

TECHNICAL DATA B-1

0 to 255

256 to 511
512 to 767
768 to 811
812 to 935
936 to 975
976 to 1023
1024 to 2047

2048 to 2815
2816 to 5887
5888 to 6655

6656 to 7679
7680 to 7935
7936 to 8191
8192 to 16383
16384 to 24575
24576 to -32256

APPENDIX B:

GraFORTH Memory Map

$0000 to $0OFF

$0100 to $01FF

$0200 to $02FF
$0300 to $032B
$032C to $03A7
$03A8 to $03CF
$03D0 to $03FF
$0400 to $07FF

$0800 to $09FF
$0B00 to $16FF
$1700 to $19FF

$1A00 to $1DFF

$1E00 to $1EFF

$1F00 to $1FFF
$2000 to $3FFF
$4000 to $5FFF
$6000 to $8200

TECHNICAL DATA

6502 Page Zero.
1isting below.

See Page Zero

6502 Stack

GraFORTH Line Input Buffer

3-D Matrix scratch-pad area
Compiler Stack, PAD String Area
Graphics Horizontal Color Buffer
DOS Link Area

Text Display Screen (used for
graphics also)

Primary character set storage area
>>> User Free Space <<«

Image position and rotation data
(See the Image Data listing below.)

Graphics address lookup tables
Data stack

Return stack

Graphics screen 0

Graphics screen 1

GraFORTH System as delivered
(Address approximate)

-30720 to
-28972 to
-26114 to
-16384 to
-12288 to

-30720 to
-18944 to
-16384 to
-12288 to

000-031 ($00-1F)

-28673
-26113
-16385
-12289
-1

-18945
-16385
-12289

GraFORTH Memory Map

Without Language Card

$8800 to $8FFF Text editor file area (when used)
$9000 to $99FF Text editor program (when used)
$9A00 to $BFFF DOS 3.3

$C000 to $CFFF Apple][hardware 1/0
$D000 to $FFFF Apple][ROM area (Basic, Monitor)

With Language Card
$8800 to $BSFF Text editor file area (when used)
$B600 to $BFFF Text editor program (when used)
$C000 to $CFFF Apple][hardware 1/0
$D000 to $FFFF DOS 3.3 and Monitor

GraFORTH Page Zero Map

not used

032-079 ($20-4F) Apple][monitor use

080 ($50)
082 ($52)
084 ($54)
086 ($56)

GraFORTH text pointer 1 (2 bytes; .
GraFORTH text pointer 2 (2 bytes
GraFORTH graphics pointer 1 (2 bytes)
GraFORTH graphics pointer 2 (2 bytes)

096-127 ($60-7F) not used (some DOS uses)
128-255 ($80-FF) used by GraFORTH

APPENDIX

B: TECHNICAL DATA B -

Useful locations in Page Zero:

128 ($80) last plotted X position
130 $82 last plotted Y position
156 $9C pointer to data stack

157 ($90) pointer to return stack

218-255 ($DA-FF) page zero matrix work area

Image Data Map
There are three data sets:

5888 $1700 undraw
6144 $1800 interim
6400 $1900 draw

Each data set contains 16 data tables, one for each of the 16
possible objects. Each data table is 16 bytes long:

Function Relative Byte

Flag (draw, nodraw) 0
XROT 1
YROT 2
ZROT 3
XTRAN 4
YTRAN 5
ZTRAN 6
XP0S 7
YPOS 8
SCALX 9
SCALY 10
SCALZ 11
0BJCOLOR 12
Image Address 13 and 14

Each table begins at a multiple of 16. Therefore to find the object
color for object 3:

16 * 3 (object 3) + 12 (object color offset)
+ 6400 (data table base address) = 6460

APPENDIX B: TECHNICAL DATA B -4

Three-Dimensional Mathematical
Method

The three-dimensional display method used in GraFORTH J[uses a system
of matrices that are successively multiplied to provide the ultimate
position for each line in the displayed image.

In the follbwing diagrams, (X) through (Z) refer to rotation angles,
and X through Z refer to cartesian scalar values.

Matrix 1:
Scale X 0 0
n Scale Y 0
0 0 Scale Z
Matrix 2:
1 0 0
0 COS(X) -SIN(X)
0 SIN(X) COS(X)
Matrix 3:

COS(Y) 0 -SIN(Y)
0 1 0
SIN(Y) 0 COS(Y)

Matrix 4:
C0S(z) -SIN(Z) 0
SIN(Z) €0S(z)]
0 0 1

APPENDIX B: TECHNICAL DATA B -5

This matrix transformation occurs once per image. Then the result
matrix is used to transform each line position using this last matrix:

X+XTRAN Y+YTRAN Z+ZTRAN

0 0 0

0 0 0
After this, if a nonzero value has been selected for SCALZ, a
perspective computation is made (in which case image drawing is about

20% slower). The plotting coordinates then are offset by the
user-provided XPOS and YPOS values, and the line is drawn.

Image Table Format

There are four bytes for each line entry in the 3D data table. Three
of these bytes are one-byte signed numbers having a range of -128 to
127, and one byte contains data about color and whether to position or

draw a line:

For each entry,

Byte 1 bit 7 (high bit) is set if a line is to be drawn, clear
otherwise. Bits 0-2 contain a color number 0-7 (if zero, no color
_change). Use of zero is recommended, this makes it possible to control
image color from the program using OBJCOLOR.

Bytes 2-4 are X, Y, and Z positions within the 3D space.

The end of the image table is indicated by having the data byte (1) be
equal to 255 ($FF).

APPENDIX B: TECHNICAL DATA B -6

Word Library Structure
and Compilation

Each word entry in the library consists of three parts:

1. A “"pointer location" containing the address of the next lower word
in the word library.

2. The word name (ASCII characters with high bit set).
3. The executable machine language code for the word.

The hexadecimal numbers displayed by $LIST are the addresses of the
pointer locations. A number returned by tic (') is the address of the
executable portion of a word.

During compilation, GraFORTH separates the input line by spaces into
individual words, then searches through the library for each word.

For each word search, GraFORTH first reads the current value of PRGTOP
to find the top of the word library. It then looks here to find a
pointer containing the address of the top word within the word
library. Beginning with this first word, it follows the pointers from
word to word down through the library. At each word, a check is made
to see if this is the word being searched for. If the word is not
found, the search falls through to a routine which attempts to convert
the word into a number. If this routine fails, the "Not Found" error
is given.

Program lines are compiled directly into 6502 machine language in the
memory immediately above the top of the word library. If the line is
an "immediate" command, and not part of a word definition, the machine
language code is executed, then promptly forgotten. If the line is
part of a word definition, the code is saved, not executed, and the
word 1ibrary expands.

At execution time, calls to other words are made through direct

machine language jumps. This is a major factor in the speed of
GraFORTH.

APPENDIX B: TECHNICAL DATA B -7

Appendix C: Disk File Directory

TYPE FILENAME LENGTH REMOVE OK?
B 0BJ.FORTH 36 NO

B 0BJ.EDITOR1 11 YES, IF 64K
B 0BJ.EDITOR2 11 YES, IF 48K
T CHAREDITOR 21 NO

T IMAGEDITOR 24 NO

T PROFILE 15 NO

T TURTLE 4 NO

T PLAY 22 NO

T STRING WORDS 4 NO

B CHR.SYS 5 NO

B CHR.STOP 5 YES

8 CHR.SLANT 5 YES

B CHR.BYTE 5 YES

B CHR.GOTHIC 5 YES

8 CHR.STUFF 5 YES

B CHR .MAXWELL 5 YES

T QUERY 2 YES - DEMO
T HEADER 12 YES - DEMO
T MENU 8 YES - DEMO
T GRAPHICS1 8 YES - DEMO
T GRAPHICS2 8 YES - DEMO
T GRAPHICS3 10 YES - DEMO
T TEXTDEMO 12 YES - DEMO
T FORTHDESC 17 YES - DEMO
T FLEDERMAUS 12 YES - DEMO
T PIANO 11 YES - DEMO
T CLOCK 5 YES

B TETRA 2 YES - 3D
B XYz 2 YES - 3D
B BAT 2 YES - 3D
B CUBE 2 YES - 3D

B HOUSE 2 YES - 3D
B CHAL 10 YES - 3D

T BIGCHAL 3 YES - PROFILE

Appendix D:
ASCI/I Characters & Equivalent Numbers

Set High Bit Clear

DEC HEX DEC HEX CHAR

128 80 0 00 ConTRoL -@
129 81 1 01 ConTRoL-A
130 82 2 02 ConTRoL-B
131 83 3 03 ConTRoL-C
132 84 4 04 ConTRoL-D
133 85 5 05 ConTRoL-E
134 86 6 06 ConTRoL-F
135 87 7 07 ConTRoL-G (Bell)
136 88 8 08 ConTRoL-H (Left Arrow)
137 89 9 09 ConTRoL-1I

138 8A 10 0A ConTRoL-J

139 8B 11 08 ConTRoL-K
140 8C 12 oc ConTRoL -L

141 8D 13 0D ConTRoL-M (Return)
142 8E 14 OE ConTRoL -N
143 8F 15 OF ConTRoL -0
144 90 16 10 ConTRoL-P
145 91 17 11 ConTRoL-Q
146 92 18 12 ConTRoL-R
147 93 19 13 ConTRoL -S
148 94 20 14 ConTRoL-T
149 95 21 15 ConTRoL-U (Right Arrow)
150 96 22 16 ConTRoL-V

151 97 23 17 ConTRoL-W
152 98 24 18 ConTRoL -X
153 99 25 19 ConTRoL-Y
154 9A 26 1A ConTRoL -Z

155 9B 27 1B ESCape

156 9C 28 1C Reverse Slash
157 9D 29 1D]

158 9E 30 1E Up Arrow

159 9F 31 1F

160 A0 32 20 SPACE

161 Al 33 21 !

162 A2 34 22 "

163 A3 35 23 #

164 A4 36 24 $

165 A5 37 25 %

166 A6 38 26

167 A7 39 27 :

168 A8 40 28 (

169 A9 41 29)

APPENDIX D: ASCII CODE TABLE D -1

APPENDIX D: ASCII CHARACTERS AND EQUIVALENT NUMBERS

Set High Bit Clear

DEC HEX DEC HEX CHAR
170 AA 42 2A bd
171 AB 43 2B +
172 AC 44 2C i
173 AD 45 2D -
174 AE 46 2E &
175 AF 47 2F /
176 BO 48 30 0
177 Bl 49 31 1
178 B2 50 32 2
179 B3 51 33 3
180 B4 52 34 4
181 B5 53 35 5
182 B6 54 36 6
183 B7 55 37 7
184 B8 56 38 8
185 B9 57 39 9
186 BA 58 3A :
187 BB 59 3B :
188 BC 60 3C <
189 BD 61 3D =
190 BE 62 3E >
191 BF 63 3F ?
192 co 64 40 e
193 Cl 65 41 A
194 c2 66 42 B
195 C3 67 43 C
196 c4 68 44 D
197 CS5 69 45 E
198 Cé6 70 46 F
.199 c? 71 47 G
200 Cc8 72 43 H
201 C9 73 49 I
202 CA 74 4A J
203 CcB 75 4B K
204 cc 76 ac L
205 (o] 77 4D M
206 CE 78 4E N
207 CF 79 4F 0
208 DO 80 50 P
209 D1 81 51 Q
210 D2 82 52 R
211 D3 83 53 S

APPENDIX D: ASCII CODE TABLE

APPENDIX D: ASCII CHARACTERS AND EQUIVALENT NUMBERS

Set High Bit Clear

DEC HEX DEC HEX CHAR
212 n4 84 54 T
213 D5 85 55 U
214 D6 86 56 v
215 D7 87 57 W
216 D8 88 58 X
217 D9 89 59 Y
218 DA 90 5A z
219 DB 91 58 [
220 DC 92 5C Reverse Slash
221 DD 93 5D]
222 DE 94 5E Up Arrow
223 DF 95 5F

224 EO 96 60 °
225 El 97 61 a
226 E2 98 62 b
227 E3 99 63 c
228 E4 100 64 d
229 ES 101 65 e
230 E6 102 66 f
231 E7 103 67 g
232 E8 104 68 h
233 E9 105 69 i
234 EA 106 6A J
235 EB 107 6B k
236 EC 108 6C 1
237 ED 109 6D m
238 EE 110 6E n
239 EF 111 6F o
240 FO 112 70 p
241 F1 113 71 q
242 F2 114 72 r
243 F3 115 73 s
244 Fa 116 74 t
245 F5 117 75 u
246 F6 118 76 v
247 F7 119 77 w
248 F8 120 78 X
249 F9 121 79 y
250 FA 122 7A z

APPENDIX D: ASCII CODE TABLE

Appendix E: Index

" 3-13 BLKSIZE 7-12
$LIST 5-30 Block Image 7-8
! 5-30 Block Printing 7-8
(4-14 Blocksize 7-8
* 3-10 BYE 5-32
+ 3-6
+L0OP 3-20
’ 5-32 C
N ag CALL 5-31
3-6 Cartesian Coordinates 6-4
; 3-10 CASE: 3-32
A 3-14 Character Graphics 7-7
2 3.23 Character Size 7-3
> 3'23 Character Sets 7-5
§= 3:23 Characters, ASCII D-1
o 3.23 Characters, lising 5-19
N CHAREDITOR 7-7
: 3-23 CHRADR 7-6
> 3-23 CHRSET 7-6
>= 3-23 CHRSIZE 7-3
CHS 3-10
CLEOL 5-4
A CLEOP 5-4
CLOSE 5-24
ABORT 7-3 CLRKEY 5-20
ABS 3-10 COLOR 6-6
Addresses 5-4 Comments, Editor 4-14
AND 3-23 COMPARE 5-19
Apple Graphics 6-3 Comparing Numbers 3-23
AREG 5-31 Compiling 4-13
Arithmetic Words 3-9 Conventions Used 1-7
ASSIGN 5-12 Creating Characters 7-10
AUTODRAW 8-3 Creating 3-D Images 8-13
Autonum, Editor 4-7 Cursor Movement 4-3
AUTORUN 5-26 CR 3-13
B D
Backup Copies 1-9 Data Storage 5-4
BASE 5-22 Data Stack 3-4
Bases 5-22 DECIMAL 5-22
BEGIN 3-29 Decision Words 3-25
BELL 3-3 Defining Strings 5-10
BINARY 5-22 Defining Variables 5-7

APPENDIX E E -

D G

Defining Words 3-14 Get, Editor 4-11
Delete, Editor 4-7 GETC 5-20
Developing Software 10-1 GETKEY 5-20
Diskette Copy 1-9 GETNUM 5-14
Display Speed 3-38 GPEEK 6-12
DO 3-19 GR 3-38
Dgg gomnangs. ::ditor g-;é Graphics Colors 6-6
D ommunication -
S el = >3 Graphics Display 3-38
DOS Modifications 2-3 f{
DRAW 8-15
Drawing Char. Blocks 7-8 .
Drawing 3-D Images 83 :E;dware Requirements g-gz
gﬁgp g'; Hidden Characters 4-3
- HOME 5-4
Duration, Music 9-3 HTAB 5-3
E l1.J.K
EDIT 4.2
Editor, Character 7-7 %F g:;g
Editor, Image 8-10 IMAGEDITOR 8-10
Editor, Text 4-4 Image Table Format B-6
Electric Duet 9-5 Insertions 4-4
ELSE 3-27 Insertions, Editor 4-8
EMPTY 6-8 INVERSE 6-9
ERASE 5-4 J 3-20
Erase, Editor 4-8 K 3-21
Erasing 3-D Objects 8-17
Error checking 3-36 L
E XMODE 6-10
Language Card 2-3
F Leaving Editor 4-13
Leaving GraFORTH 5-32
FILL 6-4 LEFT$ 5-17
Font Selection 7-5 LENGTH 5-17
FORGET 3-17 LINE 6-4
Forgetting Words 3-17 Line Entries, Editor 4-6
Forth 1-3 Line Insertions 4.4

APPENDIX E E - 2

LIST 3-3 OVER
List, Editor 4-6 Overlays
Loor 3-19 Overview
Lowercase Entry 4-2
M P
PAD
Mathematical Method B-5 Page Zero Memory Map
MAX 3-10 PEEK
Memory Addresses 5-4 PEEKW
Memory Considerations 3-38 Perspective
Memory, Editor 4-12 PICK
Memory Map B-2 Pitch, Music
MEMRD 4-13 Pizza
MIN 3-10 PLAY
MOD 3-10 PLOT
MOVE 6-13 POKE
MOVETO 6-14 . POKEW
Moving Memory 5-30 POP
MOVELN 5-18 Position
MOVMEM 5-30 POSN
Music 9-2 Postfix Notation
Music Words 9-4 PREG
_ PRGTOP
PRINT
/\/ Printing Files
Nap 3-40 Printing Files, Editor
Nested Definitions 3-36 g;gg§129 Text
NORMAL 6-9
NOTE 9-3 Program Compilation
Numbers 3.4 Program Control Words
Number Bases 5-22 Erogram ggze
Number Tables 5-32 i ructure
Numeric Range 3-4 PUSH
PUTBLK
(0] PUTC
0BJADR 8-3 R
0BJCOLOR 8-10
OBJECT 8-3 READ
Object Color 8-10 READLN
Objects 8-2 REPEAT
OBJERASE 8-3 Return Stack
OFF 8-17 Reverse Scroll
OR 3-23 RIGHT$
ORMODE 6-10 RND
Output Characters 7-2 RNDB

APPENDIX E E

1 0 L
(3]

WOYWEUNoTo;

[R l?l
N WWHEAONNNTALNBWNNYNOAOW =
N N O

NWWAWAHADWN NN

—
NAWO~N

Rotation
RUN

S

Save, Editor
SAVEPRG
Saving Character Sets
Saving Image Files
Saving the System
SCALE

~ Scaling
SCALX
SCALY
SCALZ
SCREEN
SEQUENCE
SGN
SIN
Software Development
Spaces in Entries
SPCE
Speed
STACK
Stack Words
Start-up Procedures
Storage and Retrieval
STRING
Strings
String Words on Disk
SWAP

T

TEXT

Text Display
Text Files
Text Formatting Words
THEN

3-D Graphics
TransFORTH
Translation
TURN

TURNTO
Turtlegraphics

APPENDIX E

4-10
5-27
7-11
8-15
5-27

5& &4

SRARIRRRR ST ST
N OOVWINONNWHWI RS EEROD
[%) OO

~

3-38
3-38
5-24
5-2
3-25
8-2
1-4
8-9
6-14
6-13
6-12

U

UNBLK

UNDRAW

UNL INE

UNPLOT

UNTIL

Upper and Lower Case

"4

VALID
VARIABLE
Variables
VOICE
VTAB

w

WHILE

WINDOW

Word Addresses
Word References
Words

WRITELN

X

XP0S
XREG
XROT
XTRAN

YPOS
YREG
YROT
YTRAN

ZROT
ZTRAN

1103“

|enuew auaiajay abenbuet saydein t | NOJEID

msoff

10175 S.W. Barbur Blvd.
Suite 202B
Portland, OR 97219
(503) 244-4181

	Blank Page

